ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2016. Ne 2 (27)

UDC 004:37
Yevgueny Kondratyev
Independent Software Developer, Dnipro, Ukraine

TECHNICAL OPTIMIZATION OF CROSS-PLATFORM SOFTWARE
DEVELOPMENT PROCESS QUALITY
AND USABILITY OF 3RD-PARTY TOOLS

DOI: 10.14308/ite000595

The article exposes developer's point of view on minimizing creation, upgrade, post-
release problem solving time for applications and components, targeted to multiple operating
systems, while keeping high end product quality and computational performance.

Non-uniformity of analogous tools and components, available on different platforms,
causes strong impact on developer's productivity. In part., differences in 3rd-party component
interfaces, versions, quality of distinct functions, cause frequent switching developer's attention
on issues not connected (in principle) with the target project.

While loss of development performance because of attention specifics is more subjective
value, at least physical time spent on tools/components misbehavior compensation and normal
tools configuring is measurable.

So, the main thesis verified is whether it's possible to increase continuity of the
development process by technical improvements only, and by which value.

In addition, a novel experimental tool for interactive code execution is described, allowing
for deep changes in the working program without its restart. Question under research:
minimizing durations of programming-build-test-correct loop and small code parts runs, in part.,
improving the debugging workflow for the account of combining the interactive editor and the
debugger.

Keywords: cross-platform, programming, usability, optimization

Impulse for the below research emerged from many-year practice in programming C++-
based programs and components in different areas (science, economics, graphics tools, system
tools, specialized plugins).

All such projects require at least C++ compiler and system libraries, available under target
operating system (OS). Almost none of them, also, avoids using 3rd-party tools (like text editor
with syntax highlight and code navigation) and components (application libraries, additional
system libraries, binary agents, network services and so one).

Modern software development industry tends to technology racing, when analogous
software products are issued in very short period of time, relying on further issuing new versions
containing additions, improvements, and bugfixes.

In practice, frequent version change is not optimal for quality growth, and also, from
another side, causes additional delays on adapting new versions, detecting their incompatibilities
and newly inserted issues (both consciously and unconsciously), as well as time spent on
installation and configuring for personal needs (in case of experienced developer, such needs are
very much specific and cannot be outsourced to low-cost specialists).

In hypothetic situation, such factors could be compensated from both developer sides
(tools/components suppliers and "users"), by several means.

1. (tool developer) Keeping certain subset of features unchanged:

© Yevgueny Kondratyev
211

ISSN 1998-6939. Information Technologies in Education. 2016. Ne 2 (27)

212

- Groups of interface methods, dedicated to one logical task, should not be altered. In

o

particular, changing method name in a component causes all developers, using the
component, face that change and memorize the new name in addition (!) to the old name,
which remains actual for rather long time, namely, until any previous commits of the client
project lose their actuality. Changing the order and/or default values of method arguments
cause worse problem, in addition to the above. Project code may pass compilation
successfully and then malfunction, because the implied values are changed. In the modern
iterative approach, each 3rd party component version change in such fashion breaks not
only work plan and time estimate, but causes unpredicted behavior of the released
program.

Formats of configuration and log files should be defined once to successfully reflect any
future needs of the program, or at least, should be backward compatible. The key here is
that logs and configurations may be used by the client project developer in a way that
could not be imagined by the 3rd party component developers. This is common case with
specialized libraries, both open- and closed-source. For closed-source components,
programmatic configuring and log reading are often the only means to adapt the library to
particular needs. Open-source code, potentially, can be corrected as necessary, but this is
often not affordable, because 3rd party code changes must be re-made and retested each
time the open-source library version is updated. This would result in continuous time
expense.

Identifiers renaming as part of code refactoring (itself a great method) is very much
favored practice in the modern programming. Regrettably, low and average performance
programmers do not take into account the fact that human eye has great capability to stick
to physical image, namely, to remember and quickly catch words and phrases as whole,
provided that their look (font, color, size) varies within certain narrow range. This,
conjoint with fixed screen layout (fixed text windows size, fixed sequences of menu items,
fixed icon images) allows for very fast reflex-level working on the code.

(tool developer, client project developer) Pre-configuring hotkeys and visual layouts of
developer tools to certain common minimum, without excessive elements. The "new GUI
look to improve user performance™ is most often the utopia, because the developer tool
developers have no adequate means to estimate what parts of the GUI are critical for user's
performance, including not only users with "average" needs, but also users with highly
specialized needs, in part., ones who actively write programs for over-application control,
to automate whole workflow, consisting of many tools, developed by many companies. In
all the modern operating systems, console programs, fortunately, tend to honor specific
user needs, by keeping tens or hundreds switches and parameters working unchanged
across versions. GUI applications, in contrary, tend to change layouts, formats and
behavior with each version, which is most often very unlikely for advanced developer's
performance.

(tool developer, client project developer) Active improving tool response time in frequent
operations (e.g. full project recompilation). Together with fixed names, layouts, reflex-
based working, and workflow automation (as mentioned above), responsive tools push the
experienced developer's performance to its physiological boundary, because actions on the
computer system are performed more based on the integral image, reflected in the human
mind, than as the result of looking at the screen. Computer screen here is only secondary
tool for bi-directional synchronizing the imagined system state with its physical state
(RAM, HDD, network).

(tool developer) Active improving component bottleneck functions performance.

(tool developer) Rarer new version issuing, while supporting the existing versions that
were most appreciated by developers community, by means of architecture- and interface-
saving patches.

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2016. Ne 2 (27)

In the present research, time-study is done for 3 kinds of project activity: programming

during new development, feature adds to already released project, issues solving on the new
version on the already released project. Developer tools/components used were mixed approx. in
the following fashion: 50% versions and Ul configuration are kept unchanged during for more
than 3 years; 50% are installed anew to match modern OS versions and end product compatibility
requirements, and manually pre-configured as close as possible to the older versions.

From both the time-study and previous development experience, only part of activities

may be identified as "normal” (i.e. productive, planned and predictable).

Another part is, in general, facing expectations breaking on different levels (user,

programmer) and immediate effort to fix the problem, which causes attention switching.

Essential part (not complete list, of course) of "normal” activities:

(once or rare) creating requirements specification, elaborating it between developers and
their customer,

(once or rare) selecting technologies (internet search, testing, testing existing solutions
similar in functionality),

(once or rare) creating distribution and update packages,

(once or rare) creating OS and product installations (for testing, for end users),

(once or rare) installing, configuring developer OS and tools,

(frequent) thinking,

(frequent) new code writing/compiling/testing/correcting, old code rewriting,

(frequent) 3rd-party code adapting and rewriting,

(frequent) formal test runs, debugging, issue reproduction, correction,

(frequent) documenting,

(frequent) commits, backing up, diary, todo, issue tracking, communication tracking
(manual cataloguing mail, chat, voice, desktop sharing records for efficient access),
(frequent) internet search/reading: technology or product specifications, discussions for
issue solving,

(frequent) planned communication between project participants.

Main categories of non-productive activities:

(frequent) technical operations (OS boot, network connection, manual file management,
programs open/close/tuning etc.),

(time-to-time) satisfying interest in items, unrelated to the current project, when
occasionally found in the network during normal workflow; ongoing self-education
process,

(frequent) passively spent build time,

(time-to-time) compensation of tools and components misbehavior (multiple: Ul issues,
code incompatibility, inconsistency with descriptions, implicit limitations, unknown bugs
and issues, hardware and OS problems),

(time-to-time) unplanned activity (communication between project participants and other
people, breaks during work time etc.)

The more detailed list of factors, influencing attention weakening or switching.

Remark. Very possibly, part of problems due to irresponsible development by leading

software companies and less professional developers is larger than part going from physical or
technical limitations of system used and chosen tool/component architecture.

el A

So, some partial recommendations are added to keep attention tight on different sides.

OS response time during boot and normal operation. This can be greatly reduced by
combining the following:

Using SSD instead of HDD.

Increasing RAM volume.

Disabling unnecessary OS services, scheduled tasks, automatic recovery etc.

Disabling unnecessary internet connections on the firewall level.

213

ISSN 1998-6939. Information Technologies in Education. 2016. Ne 2 (27)

214

5.

Disabling GUI visual effects.

Spontaneous OS self-activity slowing down normal program response. Even with the
above optimizations, it does not disappear completely, and requires individual research for
each case.

Network/browser response time. Browser response time is reduced by individual browser
settings, related to automatic network services. Network response time bottlenecks
removal may have different causes, requiring individual approach.

OS and program GUI issues breaking normal workflow. While problems that occur
regularly may be solved as early as possible (experimentally and/or using online issue
discussions), spontaneous issues (driver faults, system hanging, high CPU consumption by
certain programs for unknown reasons etc.) are unavoidable.

Program GUI constantly changing controls, informational areas, list items position on the
screen (by design). This is discussed above.

Occasional system crashes. Due to multitude of ongoing optimizations and overall
instability, whole image of operating system and programs should be backed up on regular
basis. Practice shows that no modern system can be regarded as completely stable,
especially when fully equipped with 3rd-party software according to developers needs. To
benefit from backups, each used program must be researched and configured individually
in the way that all its variable data (files, registry entries) is kept out of the system image.
Variable data should be backed up separately.

Extra full rebuilds due to incremental build misbehavior. In some cases, may be solved by
multi-core and distributed building. Generally, the choice for each build is intuitive, based
on the level of changes (header files, declarations, macro definitions vs. function bodies
only).

New or new-version 3rd-party component requires special tools/environment and/or
correction to build correctly. In this situation, to build the component only is generally not
enough. The new tool has to be built into the current workflow and automated along with
the currently used tools.

New or new-version 3rd-party component requires too much redesigning to be integrated,
so that alternate solution search attempt is necessary. Rewriting or alternative
implementation may be the choice if estimated time expenses on development and support
for the new code during whole lifetime are less than that of redesigning each new version
of the initial component.

3rd-party component appears faulty or bad-coded in the middle of the development phase.
The above re-implementation is the only choice to avoid after-release problems.
Non-optimal 3rd-party algorithm may lead to application performance loss. This should be
tested early, on prototype, if possible. Unfortunately, re-implementing fine algorithms is
not always affordable.

Generalization in any set of functions may lead to application performance and feature
loss. This also should be tested early. Note that keeping specialized versions of functions
increases project size and complexity.

Good component may lose performance if misused or non-optimally used on the client
side. The developer has to try controlling the way of using his component or tool by his
"clients", themselves developers. Possibly, some modeling client's behavior may be done
to find the most weighing problems, before the component is released. One of the good
practices with general-purpose components is releasing the component or its part as open-
source project. This works well even with commercial components, when they are part of
some major project. Testing the component by multiple specialists in unpredictable
conditions allows for adapting its features to common expectations.

Good tool or component may become unusable in conditions of high system or task load.
Stress-testing should be a must for responsible projects, regardless of time spent on it.

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2016. Ne 2 (27)

Automatic test cases should be written for each feature, conditional branch, and
parameters set, including unused branches and edge cases. In case of large projects, where
complete testing is not possible, at least all main functions must be tested before closing

the project [2]. Before implementing any new feature, longer than 1 man-month, a

prototype should be created and tested. Some authors [1] recommend to throw out the first

version of any system.

- Good tool or component may become unusable if it's based on shorter lifetime component.
Avoid technologies, whose owners too frequently change terms of their product use and/or
drop support for well-working products.

Note. Some of the described factors are touched by [3], a huge research concentrating on
human factor rather than technical means.

Time-study results for randomly chosen 10 hours

1. Normal development activity.

Average time: 66%.
Max. time in distinct session: 95%.
2. Technical operations.
Average time: 7%.
Max. time in distinct session: 29%.
3. Passively spent time during system being busy (build, connect, file copy, calculations).
Average time: 0.6%.
Max. time in distinct session: 1.1%.
4. Compensation of tools and components misbehavior.
Average time: 18%.
Max. time in distinct session: 28%.
5. Unplanned activity.
Average time: 9%.
Max. time in distinct session: 20%.

Interpretation

First of all, max. development activity is nearing 100%. This shows theoretical boundary
of productivity.

Technical operations are mostly unavoidable. Some small part of time may be saved by
configuring tools uniformly in all OSes as close to physical reflexes of the developer. In part, the
most frequently used tools (like text editor) must be chosen by minimal startup and response time.

Passive time due to system load may be larger in certain projects. Frequency of rebuilds
depends on task being solved and developer proficiency. If avg. number of rebuilds in medium-
size project is less than 10-20 per day, technical speed-up for write/build/test/correct loop is rarely
necessary. Still, the loop optimization is valuable because of sideway tasks, prototyping, stress
and stability testing. One of the approaches, currently under research, is described in the below
section.

Unplanned activity cannot be decreased in formal way, so its part remains as is. This value
roughly coincides with tests performed by other researchers.

Tools and components misbehavior lays the heaviest stress on developer's attention.
Curiously, time part of facing/solving this kind of problem is almost unchanged from session to
session. Also, it's noticed from the experience, that during each of more than 90% sessions, at
least one such problem emerges.

It must be noted that in different development niches and sectors the above values may
noticeably differ, also they depend on developer proficiency level. The present research does not
intend to cover all cases (it's not possible), but highlight several harassing problems of modern
software development culture.

Experimental tool for interactive coding in C++

For the programmer, using C++ language in the multitude of various projects, it is often
necessary to quickly test small scattered fragments of a program. As a rule, operating system,

215

ISSN 1998-6939. Information Technologies in Education. 2016. Ne 2 (27)

build environment, compiler version and other technical conditions are rigidly specified in each
particular project, and noticeably differ between projects.

Designing experience and level of problems, solved by specialist, are constantly growing,
and the interest in operating system nuances, language features and their implementation in the
compilers, is growing as well. Integrating source code and third-party components causes endless
research for increasing reliability and avoiding technical flaws.

Existing language interpreters are only partially applicable to such tasks. Existing
debuggers allow for working on the source level and link with binary representation, relying on
the particular compiler specifics, but many of them have obvious problems with manual editing
complex objects on the fly (i.e. while standing on the breakpoint) and too long response time (for
specialist - not an average user).

During years, these inconveniences become distressing. Although, it's well known how
difficult it is to create a compiler alone from scratch, keeping within the thousand-paged standard.
Each IDE, interpreter, debugger are also huge projects.

So, a flexible, simple and universal tool, raising the convenience of compiler-oriented
language to the level of interpreted languages, seems hardly implementable, esp. by personal
effort in open-source fashion. Major obstacles: wide range of needs and giant time expenses.

Nonetheless, time is going tirelessly, and one day there comes an idea.

1. Interactive C++ editor (including, later, commands for system shell etc.).

1.1. Instructions input via arbitrary text editor, initially - notepad.

1.2. Automatic compiling and execution after specific keypress.

1.3. Both the source code and run-time console output are automatically put into the

second window of the text editor. The programmer may freely edit, copy-paste etc. any

part of any text. The interactive editor minimizes the cycle of code writing and debugging,
also making possible efficient problem solving in areas, traditionally serviced by
interpreted languages.

2. The monitor program, implementing the above operations, is also responsible for keeping
the run-time context (global variables) in RAM during session.

3. Each new portion of instructions, when compiled and run, sees all existing declarations
and global variables. The interactive code preprocessor must distinguish between the
following kinds of blocks: directives (#include, using...); declarations (structures,
functions...); global variables declarations; statements for immediate execution. To take
into account editors with code navigation, methods of separating instructions and
including the existing declarations must be configurable. Still, for simpler prototyping, the
initial version uses specific character sequences (, -, "1, "2) to distinguish between
blocks.

4. When any window of the text editor is manually closed, the monitor program
automatically calls destructors for all global variables, frees memory, unloads dynamic
modules, closes all additional windows.

An example of interactive code follows.

“1#include <ctime>
“2double max_delta(const vector<double>& qq)
{
if (qg.size() <2) { return 0.; }
double dt0 = qq[1] - qq[O];
for (unsigned int i = 2; i < qq.size(); ++i) { double dt = qq[i] - qq[i-1]; if (dt > dt0) { dt0
=d;; }}
return dto;

“vector<double> qq;
“int t1 = clock(); qg.push_back(t1 / 1000.);

216

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2016. Ne 2 (27)

while (qqg.size() < 10) { while (true) { int t2 = clock(); if (t2 !=t1) { t1 = t2; break; } }
qg.push_back(tl/1000.); }
cout<<"Timer resolution, s: "<<max_delta(qq)<<flush

It's easily noticeable that the code is not pure C++. It consists of several sections,
separated by special character sequences. They can be input together or separately. Anyway, the
final autogenerated session code will be functionally the same:

#include <windows.h>
#include <iostream>
#include <iomanip>
#include <vector>
#include <string>
using namespace std;
#include <ctime>

struct session

{
void __ f1()
{
cout<<"Hello, World\n";
}

double max_delta(const vector<double>& qq)

if (qg.size() <2) { return 0.; }
double dt0 = qq[1] - qq[O];
for (unsigned int i = 2; i < qq.size(); ++i) { double dt = qq[i] - qq[i-1]; if (dt > dt0) { dt0
=dt;}}
return dto;
}
struct ___d2 { long long ___sep; vector<double> qq; }; long long __ sep2;
vector<double> qq;
void __ f2()
{
int t1 = clock(); gq.push_back(t1 / 1000.);
while (gg.size() < 10) { while (true) { int t2 = clock(); if (t2 !=t1) { t1 = t2; break; } }
qg.push_back(tl/1000.); }
cout<<max_delta(qq)<<flush;

}
}

#define _ ICPP_DLLEXPORT extern "C" __declspec(dllexport)

__ICPP_DLLEXPORT void __icpp_addinit(void* pd) { new (&((___session*)pd)-
> sep2) __ session::_ d2(); }

__ICPP_DLLEXPORT void __icpp_exec(void* pd) { ((___session*)pd)->__ f2(); }

__ICPP_DLLEXPORT wvoid __icpp_destroy(void* pd) { ((___session*)pd)-
>~ session(); }

This is pure C++ code, suitable for compiling a DLL. The interactive editor ensures
building the DLL, loading it into its own address space, and calling __icpp_exec. Possible console
output is redirected into file and displayed to the user (programmer) when the function exits.

217

ISSN 1998-6939. Information Technologies in Education. 2016. Ne 2 (27)

Note. OS choice for the first experimental implementation of interactive editor is
Windows. In POSIX system, something analogous is easily achievable. The most important is
keeping simplicity and small volume of source code (the working program does not exceed 1500
lines, written during 3 days), so that any interested programmer could adapt it to personal needs.

Factual interactive C++ host algorithm is rather intricate. Still, main sequence, without
details, is simple:

1. Allocating and holding an area of dynamic memory for session variables (plus certain
amount reserved).
Main loop:
(*) Watching for Ctrl+Enter keypress in the text editor window ("window #1"). If the
window has been closed, go to step 12.
(*) Get the text from window #1.
Construct the source code of the session.
Compile a DLL from the session code.
(*) On compilation error, print results (console text) into the text output window ("window
#2").
On compilation success:
Print session code into window #2.
Clear window #1.
Load new DLL, call __icpp_addinit.
0. Output step 9 results into window #2.

On step 9 success:

11. Call __icpp_exec. Output results into window #2. Go to step 2.

Completion:

12. Call __icpp_destroy of all loaded DLLs, in reverse order. Free the memory block left after
destroying session variables.

13. Close windows #1 and #2.

14. Exit the monitor program.

Note. Non-trivial functions are asterisk-marked (first occurrence). Their implementation
depends on programmer's needs, and also on the programs used as text windows. When porting
the monitor program into different OSes, these functions may also be implemented differently.

Interactive C++ implementation properties and benefits

For interactive C++ editor, there are many obvious applications, the first ones are speeding
up the coding-compiling-debugging cycle, and modifying variables in the working program.
There may be several scenarios of interaction between the monitor program and the context of
target program, for example, injecting a series of hook DLLs into the working program instead of
loading session DLLs into the monitor program context, reading and modifying variables by
addresses, taken from the debugger, sending/receiving messages and synchronized access to
variables in the multithreaded context, manipulating threads through system API calls etc.
Implementing such functions for individual needs does not exceed several days.

With default configuration, factual program startup time is about 0.2 s. Response time for
executing a simple C++ instruction is about 1 s, where 80% is spent by the compiler.

The first tests of the interactive editor were conducted on rather complex project - the
library for synchronous capturing desktop images sequence with windows filtering. Testing
showed what's necessary to add for getting everyday tool for real-time debugging multithreaded
applications. Major changes: configuration file format, text windows and clipboard control
algorithm. The tested library also required certain modifications, caused stability improvement on
loading and unloading (static variables are moved into the single dynamic object, inherited during
debug by all loaded DLLs; addresses of loop procedures, executed in the dedicated threads during
screen capture, are dynamically updated on loading each new instance (version) of the session
DLL).

N

oA W

B2 oo~

218

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2016. Ne 2 (27)

in part.,

The described approach allows for debugging the program without breaking or restarting,
modifying algorithms, arbitrarily modifying and printing values of variables. For

example, on the below screenshot you can see a moment of applying changes in the code line,
printing certain debug info. Initial line:

cerr <<"T " << GetTickCount() << " ifrl " << ifrl << "t est" <<t _est_prev << ™\n";
New line:
cerr <<"T " << GetTlckCount() <<"ifrl " <<ifrl <<"\n";

= [D:\progilibsyncscreapiprojec
a File Edit Block Search Macros P\uglns Tools Project Yiew Windows Options Help

T T] TS 10T, ® W el L2

EJ

B
[E]
3

2|

T

CLI dby session [/] | | 017EO750
SRY: libsyncscreap_modsm_002 20
F[T] hm1 DODOO12C

UL [5] hfl LSSC_sv_ic++dbg_4112_static_dptr_t_mutex|LSSC_snv_ic++dby_4112_static_dptr_t_file_mapping|
11l [4] p 01850000
Il [5] D0AZZAB0
SRY static_dptr.
ERUEC GBS T 27224875 ifrl 1367 t_est 'm 0095
FEOTIE T 27224982 ifrl 1368 t ¢ 9.5
IV 1 22225078 ifrl 1369 t

ELVOTLE G T 27225281 ifrd 1371 t_ o 72 19125

A

T

|l 27224781 ifrl 1366 t_est 70.6823

T 27225171 ifrl 1370 t

projects

#| client.cpp
#| servercpp
- opre

Fig. 1. A screenshot, taken at the moment of interactive applying changes in the C++ code line.

The interactive editor supports multiple text editors and compilers, tunable via

configuration file. Here, it is necessary to make several notes.

1.

2.

From the point of view of the target project, supporting several compilers increases code
quality.

Not all builds and combinations work ideally in the context of interactive DLL host,
presumably due to underlying libraries implicit use of inner static variables. Depending on
the compiler and OS version, either static or dynamic builds may perform better (i.e.
without casual faults). Console output redirection may behave incorrectly, if build
parameters of the monitor program differ from that of the target project (session DLLS),
because the monitor program is at the same time the session DLL host.

The debugging itself is the most pleasant and effective with the compiler, having the least
time of getting the binary module (session DLL) - the major component of response time
for user sending a portion of interactive code. Here, the situation with "what compiler is
better" is dramatically different from multiple discussions available in the Internet. For
example, among tested compilers, "the best™ is cl.exe, released with VS 2008. It's response
time when recompiling 5000 lines of the target project (the capture library) is 2..4 s. For
comparison, 2015'th g++.exe spends 6..14 s, icl.exe - about 15 s, which noticeably breaks
interactivity of the debug workflow.

Obviously, combining the described approach with traditional debug workflow may

require certain debugger tuning. In return, it gives the flexibility unreachable with interpreted
languages in complex projects: simple and fast access to all levels of code and data, down to
physical addresses, in the environment (compiler, IDE, OS) exactly matching with customer

219

ISSN 1998-6939. Information Technologies in Education. 2016. Ne 2 (27)

requirements. Porting the interactive editor into different OSes should not be difficult because its
source code is very small and uses only standard system APIs.

Resume

In the scope of present research, it must be concluded that developers, having more than
average responsibility for their projects, are very limited in 3rd-party means to base on, especially
when the project is targeted to two or more platforms.

This should be taken into account by all interested parties, because the long-term physical
limit of processing unit technology is already reached. Modern OSes, IDEs, component bundles'
size, responsiveness, performance, are far from optimal, yet farther from theoretical boundary.
Multi-core calculations solve only part of the problem. The most essential bottlenecks in
programs remain sequential. It should be noted by many leading developers and project managers,
that the nature of programs is qualitative, not quantitative. Economical approach (in part.,
"product”, "industry”, "productivity”, "profit" terms) is almost fully valid for physical
manufacturing and more-less for agriculture. In software development, it's only simulation, valid
during relatively short period of time. Software "product” may live long, only being and
remaining exceptional in some of its properties, for example, near-theoretical response time for
everyday use tool, or, in computational area, 10x calculations speed in comparison with analogous
products.

Product uniqueness is important, but not the only sign of projects, requiring technical
optimization. To benefit from that, project participants must have certain level of software
development culture, based on past experience and personal self-development efforts. This
implies management's ability to hire and keep exceptionally gifted people [2].

On the educational level, talented students should be assisted by the older, experienced,
specialists, in removing professional system usage bottlenecks. As practice shows, many of the
students, capable of solving algorithmic tasks, spend too many time and efforts when misusing
development tools. Also, on another level, insufficient knowledge of system programming and
operating system internal operation, leads to misusing good 3rd party products. This sometimes
causes 10x loss of end product performance, and introducing high-level bugs.

Currently, a specific research is conducted on the described problem. Also, as described,
one of C++-specific problems (tendency to longer build time and slower automatic testing when
the project grows) is attacked by developing an experimental tool for interactive code execution.
Interactive C++ code execution allows making tens to hundreds varying tests per hour on the
working program, without increasing complexity of the developer's toolset.

REFERENCES
1. Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering. 1975, 1995.
2. Edward Sullivan. Under Pressure and On Time. 2001.
3. Andre N. Meyer, Thomas Fritz, Gail C. Murphy, Thomas Zimmermann. Software Developers’
Perceptions of Productivity. 2014. URL.: http://research.microsoft.com/pubs/228971/meyer-fse-
2014.pdf

Cratrs Hagiia o pepakmii 19.03.16

Konaparnen €. B.

Juinpo, Ykpaina

TEXHIYHA ONITUMI3ALIUSA MNPOLECY PO3POBKH KPOC-
IVIAT®OPMHOI'O IMTPOT'PAMHOI'O 3ABE3IIEYEHHSA AKOCTI TA 3PYYHOCTI
BUKOPUCTAHHSA IHCTPYMEHTIB

CraTTst pO3KpUBAE TOUKY 30py PO3POOHUKA MPOTrPaMHOro 3a0e3MeueHHs] Ha 3BEJICHHS J10
MIHIMYyMY 4acCy CTBOPEHHSI, OHOBJIEHHS, KOPUT'YBaHHSI IIPOrpaM 1 KOMIIOHEHTIB, IPU3HAYEHUX IS
JIEKUIBKOX OINEepalifHUX CHUCTeM, NpH 30€pekeHHI BUCOKOI SKOCTI KIHLEBOTO TMPOJIYKTY 1
MIPOYKTUBHOCTI OOYHUCIIEHb.

220

ISSN 1998-6939. IHdopmauinHi TexHonorii B ocBiTi. 2016. Ne 2 (27)

HeonnakoBicTh aHaJOriyHUX I1HCTPYMEHTIB 1 KOMIIOHEHTIB, JOCTYHNHHMX Ha pIi3HUX
miaTdopMax, Ma€e CHWIBHHH BIUIMB Ha MPOAYKTHBHICTH PO3pOOHWKA. 30KpeMa, BIIMIHHOCTI B
iHTepdeiicax KOMIIOHEHTIB TPETIX CTOPiH, BEPCISAX, AKOCTI OKpEeMUX (DYHKIIIH, BUKJIMKAIOTh YacTi
MEePEKIIIOUYCHHST yBaru po3poOHMKA Ha MpoOJieMH, HE TMOB's3aHi (NMPUHIUIIOBO) 3 IUIBOBHM
MIPOEKTOM.

VY TOi yac SK OIlIHKa BEJIMYMHHM BTPATH MPOJYKTHUBHOCTI PO3POOKH Hepe3 OCOOIUBOCTI
yBaru Mmae OuIbIl CyO'€KTUBHHMIA XapakTep, NpuHaiMHI (I3MYHMIA dYac, BUTpAYeHUH Ha
KOMITICHCAIIII0 HEeTIPAaBWIILHOT TOBEAIHKH IHCTPYMEHTIB Ta KOMITOHEHTIB, MOYKE€ OYTH BUMIPEHO.

TakuM 4YHHOM, OCHOBHA Te€3a, IO TNEPEBIPIETbCA — YH MOXIJIMBE 30UIBIICHHA
Oe3IMepepBHOCTI Ta TPOIYKTUBHOCTI TPOIECY pO3pOOKHM 3a paxyHOK TIIBKM TEXHIYHUX
yIOCKOHAJICHb, 1 Ha SIKY BEJINYHY.

JlonaTtkoBo, pO3TJISTHYTO HOBUH, CKCIEPUMEHTAIBHUN IHCTPYMEHT Il IHTEPAKTHBHOTO
nporpamyBaHHs. [HCTpyMEHT 103BOJIsSi€ BHOCUTH INIMOOKI 3MiHH Y TIporpaMy B mpoteci ii po6oTu,
0e3 mepeszanycky. JlocmijpkyBaHe THTaHHS: MiHIMI3AIlisl TPUBAIOCTI IUKIY IMPOTpaMyBaHHS-
KOMITUIALISA-TECTYBaHHA-KOPEKIliSt Ta MEPEeBIPKM OKPEMHX HEBEIMKUX YaCTHH KOJy, 30Kpema,
YIOCKOHAJICHHS pOOOYOro TMpOIeCy HAIAaro/DKeHHS 3a PaxXyHOK CYMICHOIO BHKOPHCTaHHS
IHTEpaKTUBHOTO PEAAKTOpa Ta HAJIArO/KyBaya.

KawuoBi cjaoBa: Kkpoc-uiarOpMHUI, TPOrpaMyBaHHS, 3PYYHICTh BHKOPHCTaHHS,
OIITUMI3aIlist

Konaparwes E. B.

JAuenp, Ykpanna

TEXHUYECKASAA OINTUMHM3ALIUA ITPOLECCA PA3BPABOTKH KPOCC-
IVIAT®OPMEHHOI'O IHIPOTPAMMHOI'O OBECHEYEHUSA KAYECTBA U
YAOBCTBA UCIIOJIB30OBAHUA NHCTPYMEHTOB

Cratbsl packpbIBaeT TOUKY 3peHHsS pa3pabOoTuMKa Ha CBEAEHHE K MHUHUMYMY BpEMEHU
CO3/1aHMsl, OOHOBJIEHUs, IOCT-PEIM3HON KOPPEKIMM IPUIOKEHUH U KOMIIOHEHTOB,
MpeHa3HAYEHHBIX Il HECKOJbKHUX OIEpPallMOHHBIX CHCTEM, IPU COXPAHEHHH BBICOKOIO
KauecTBa KOHEYHOTO NMPOIYKTa U NMPOU3BOAUTEIBHOCTH BBIUYUCIICHUN.

HeonnHakoBOCTh aHAJOTMYHBIX HMHCTPYMEHTOB UM KOMIIOHEHTOB, JIOCTYIHBIX Ha
pasnuyHbIX IUIaTopMax, UMeeT OOJbIIOE BIMSHHME Ha MPOM3BOAMUTENBHOCTH pazpaboTunka. B
YaCTHOCTH, pa3iuuusg B HHTepdeiicax KOMIOHEHTOB TPETbUX CTOPOH, BEpPCHUSAX, KadyecTBE
OTAENbHBIX (PYHKIUH, BHI3BIBAIOT YACTOE MEPEKIIOUEHIEe BHUMAHUS pa3paboTynKa Ha IpoOIeMbl,
HE CBSI3aHHbIE (IPUHIMIIUAIBHO) C 1IEJIEBBIM TPOEKTOM.

B To BpeMs Kak KoJM4ecTBEHHasl OLEHKA OTEPU NMPOU3BOAUTEIBHOCTH Pa3pabOTKU HU3-3a
0COOCHHOCTEN BHUMaHUS UMEET cKopee CyOBbEeKTUBHBIN XapakTep, 1o KpaiiHeil mepe ¢pusnueckoe
BpeMs, 3aTpayeHHOE Ha KOMIICHCAIMI0 HENPaBUIBHOIO IIOBEIEHUS HMHCTPYMEHTOB W
KOMITOHEHTOB, U3MEPHUMO.

Taxkum 00pa3om, OCHOBHOI MPOBEPSEMBIN T€3UC — MOXKHO JIM YBEJIUYUTh HETIPEPHIBHOCTD
U MPOJYKTUBHOCTD IpoOIecca pa3padOTKH 3a CUET TOJBKO TEXHUYECKUX YCOBEPIIEHCTBOBAHUH, U
Ha KaKylo BEJIMYHHY.

JloTIONMHUTENBHO PacCMOTPEH HOBBIA, OKCIIEPUMEHTANbHBIM ~ MHCTPYMEHT JUIS
MHTEPaKTUBHOTO MpOrpaMMupoBaHusi. IHCTpYMEHT MO3BOJISIET BHOCUTh TITyOOKHE U3MEHEHHUS B
mnmporpaMMy B mporiecce e€ paboTsl, Oe3 mepesamycka. Mccnenyemblit BOmpoc: MUHUMHU3ALIHS
JUINTEIBHOCTH IHMKJIA MPOrpaMMUPOBaHHE-KOMIMISLHA-TECTUPOBAHNE-KOPPEKLIUSA U TPOBEPKHU
HeOOJBIINX YacTell KoJla, B YaCTHOCTH, YCOBEpIIEHCTBOBaHME pabodero mpoiiecca OTIaIKH 3a
CY4ET COBMECTHOT'O MCIOIb30BaHUS MHTEPAKTUBHOIO PEAAKTOPA U OTJIaTUHKA.

KaloueBble ciaoBa: Kpocc-IaTQOpPMEHHBIH, MPOrpaMMUPOBAHHUE, yJOOCTBO
I10JIb30BAHHUS, OIITUMHU3ALIHSL.

221

