IHchbopmauinHi TexHoRoriT B OCBITI

UDC 004:37

THE CODE EDITOR IN THE ARCHITECTURAL AND TECHNICAL
DESIGN STRATEGY OF THE INTERACTING COMPONENTS
OF THE PROGRAM DEMONSTRATION ENVIRONMENT WHILE
CONDUCTING COMPUTATIONAL EXPERIMENTS

Alferov E.

Kherson State University

The paper presents an integrated environment for studying the course «Basics of
algorithmization and programmingy (http://weboap.ksu.ks.ua), which solves the problem of
improving the efficiency of studying this important discipline. We describe the design and
development of new version of the program demonstration environment, which allows execution of
computational experiments to study the complexity and majorizability of sorting algorithms. Much
attention is paid to the development component of the code editor. An architectural design strategy
was formed. It determines the solution components and their interactions. The paper describes the
technologies and products which were selected as a means for implementing solutions.

Keywords: basics of algorithmization and programming, program demonstration
environment, code editor, computational experiment.

1 Introduction

One of the most important steps towards improving the effectiveness study of the course
«Basics of algorithmization and programming» in higher educational establishments is the
development and implementation of software, using the same methodology, and the interaction of
all electronic tutorials.

In the integrated environment for the course «Basics of algorithmization and programming
not just learn lexical structures of the programming language, but also ways of algorithmization and
their wide use while solving tasks. It is also proposed together with the study of theoretical material
to carry out a computational experiment to study the complexity and efficiency of algorithms. This
kind of approach to content enhances students' research activities, the fundamental subjective
training of future professionals through formal and logical display of cause and effect relationships
and, as a result, impacts on the motivation of students [1]. A computational experiment to study the
efficiency of algorithms is performed by using a special module «Program demonstration
environment» from the integrated environment for course study of the «Basics of algorithmization
and programming.

2 Program demonstration environment

Today's version of the module program demonstration environment is integrated by the
modified program interpreter Pascal (see figure 1). This version was created with the help of the
parser of languages ANTRL — Another Tool Recognition Language, and is made as a separate static
library which is performed and compiled in a module demonstration environment [2, 3].

The demonstration environment for performing algorithms is created as an ActiveX
component, which is why Internet Explorer browser and Windows platform must be used.

The system of the new version of program demonstration environment includes 6 main
components (figure 2):

. Code Editor;
Input Data Generator;
Syntax Analyzer (Parser);
Walker;
Visualizer;
Component of Results and Statistics.

148

The Code Editor In The Architectural And Technical Design Strategy...

=
il 0
s |«
b : Data; e
Eegin \k—\l
If ali] 871
then begin [ARS
b = alil; {J
alil := aljl:
| l““
end
End; ,_.uuuul_ll. “ I. Ul UU
=1 1 2 2 4 5 =] 7 &8 Q 10 11 12 12 14 15 168 17 18 19 20
Procedure Conflict(i, k : In| | -
ar [Conswe] [Confiict 3 [EB
3 ¢ Integer: E D @ | Lﬁlk_‘ D
Begin = I
j o= 2¥i; .] J 0 19
If J =k ' o B
then Condwap (i, 3}
else if § < k L
then begin : ‘
if a[j+l] » aljl
then j = 3 + 1; W‘
Condwap (i, ji: l
Conflict(j, k) T " . 1
and afi] = afj]
End;
< —] m
473

Fig. 1. Today’s version of program demonstration environment screenshot.

Code Editor Component
accepts text program at start,
performs syntax highlighting

and other functions. Bl Parser Component
iGunerate receives the text of the program.
Generator At the beginning gives parse tree (Tree),
which bypasses Walker

i

_i i Parser (Syntax Analyzer) ———%\lResuit
{

----- i

i o

! {

agubsystems
e e W TP Package: Tree

executable area of the program.

DrawWalkar |
Vizualizer | o i
T i
{Result
Result&Statistics —%Expﬂm @
Componant Visualizer, l ———————
uses interfaces of Walker.

Statistics and results module. ! iﬁ
Receives data about passing algorithms at input i

T
! !
! !
! i
! }
NS T et Nae '} b b

and provides ouputting results in graphs.
Run export in various documents.

Fig. 2. Diagram of all components of the program demonstration environment and their interaction
with each other.

Each of them provides all necessary interfaces that define the above interaction.
Relationship of components is represented in the component diagram [4] (see Figure 2).

10penFromUserFile interface allows opening the users file with the code.

10penFromCollection allows the user to open in the demonstration environment some of the
fundamental algorithms contained in the system collection.

IHighlightSyntax — performs syntax highlighting of the program code, gets information
about the relevant syntax structure of the Walker component.

149

© Alferov E.

ITransmission — is a code editor interface that uses the parser to build an algorithm abstract
tree (Tree).

IDataGenerate generates input data for the program.

IColorizeCurrentStatement —is an interface that highlights the construction that is currently
being performed.

IParse — interface for the parser, which uses /Transmission for receiving the text of the
program, parses the written code for the necessary structures and builds an abstract tree.

IDrawWalker — visualizer interface that receives data from the parser and performs
graphical interpretation of the algorithm.

IResult — the results and statistics component interface which gets information about the
algorithm (number of comparisons, assignments, execution time, etc.) and uses this information to
show the statistical results.

Currently we are developing a new version of the « demonstration environmenty using the
advanced technologies Silverlight/Moonlight. The plan is to ensure maximum of cross-platform,
interactivity and ease of application software. The future «demonstration environment» will give
the ability to view the interpretation of algorithms in such high-level programming languages like
Pascal, C and Java.

3 Code editor component in the demonstration environment

In the process of writing code or scripts to implement an algorithm in the selected
programming language, one needs, first of all, a practical and comfortable code editor. Coding is a
part of programming just like analysis, design, compilation, testing and debugging, accompaniment.

Integrated development environments that simplify and support the process of creating and
debugging program source code are one of the most demanding types of software on the market.
Popular programming languages often are distributed in multifunctional integrated environments
that provide easier access to language features for programmer. Complexity of modern editors,
compilers and interpreters requires more automated development environments, which avoid more
routine programming work.

The Code Editor provides a set of features that help in writing and editing code. The specific
features and their arrangement vary depending on the development language and the current
settings.

Today there are many code editors with different degrees of functionality and quality of
supporting programming languages. One of the central features of code editors is the analysis of the
structure of source code and coloring it on the fly (in the process of editing on the part of user). The
main index here is universality. Not many editors can boast of a large list of supported
programming languages. In many cases, quantitative indices did not correlate with quality of
coloring and analysis of source code.

The development of a new editor provides for editing files in one session, code creation by
using patterns of algorithmic constructions, hiding blocks of code for easier reading, writing
comments to the code, syntax highlighting, validation of the location of brackets, lighting of
executed code and some other additional features that simplify the process of writing code.

Figure 4 shows the properties of the code editor in the new version of program
demonstration environment. The editor allows the user to open a search or sort system collection
algorithms. One can create one’s own collection of algorithms, which can be saved on a personal
computer. Parallel to this, one may save or open local files (extensions .pas, .c, .java) with the
program code in the appropriate previously selected programming language.

In the code editor is presented basic editing features (copy, cut, paste), line numbering,
syntax highlighting of the selected language, patterns of algorithmic structures (types, arrays,
operations, functions, etc.) and automatic script completion function intellisense, which will
simplify coding programs and offer beginner-programmers the possibility to see the theoretical
parts of the material associated with the chosen language.

150

The Code Editor In The Architectural And Technical Design Strategy...

B
l

(Lo] e |
Open App .

H

Q: Show Panel of action

OpensSystem Collection

[= S

penAlgorithmList

Showlist s MakeList

ChoosesAlgorithm OpenCode

Manipulates Code :> LineNumbering
g > SyntaxHighlight

|

|

|

J

|

|

SyncWorkWithModules. t
SyntaxAnalyzer I'{}(” ::> EdingFunctionsProviding |
< SavingToBase ¢
|

|

|

|

|

|

|

I

|

X

] b o
g
g
H

™ ™ MakeList

Saves/Run programm

o
-
{ Transition
1 Vizualizer N |
= |
Works with Vizualizer |
Logks for Results i
T ;k i
i i i
i i Result&Statistics i
i i i

Client side on Application Code editor Sarver side
work station Videolnterpretator 3.0 module in application

Fig. 3. Sequence diagram, which shows the interaction of objects when working with code editor of
environment of programs demonstration, organized by time of their appearance.

I . ,] Collection of s&’ m I
Collection of users Code Editor l._;,‘(
ke a

Editing functions \

) ¥ (3

SRamA Line numbering

. =
| 1,2,3,45,6,789,10,11,12,13,14,15,... I

Syntax Highlighting
& T
opPascallCH £

Java

Templates of algorithmic

r structures
Saving [Types, Arrays, Operators, J Saving

Functions, Procedures, etc.

\ Autocomplete/Intellisense /

Saving
Local
File

Fig. 4. Above is shown the code editor possibilities of the program demonstration environment.

151

© Alferov E.

Creating or designing algorithms is performed in 3 phases:

. Creation of the algorithm code in one of the supported programming languages.
. Generation of data for global algorithm arrays and adding them to the collection.
. The assignment of generated data to the global arrays from the collection

After the user has finished creating the text of the algorithm he/she should press «Build».
Then the syntax analyzer will parse the program and create an abstract syntax tree or in case of
failure — an error message. In the case of syntactic correctness of the algorithm text a data
generation toolbar will be displayed on the right side of the window. The data generation toolbar is
divided into three blocks:

System e
Collection I |
I |
ll Pr: m :
I o File
| - 1 | |
I = ———— fioe sl |
B s s o nee | |
| |
—§$: ISave |
|Print&SendMail i
TcopyCutpaste [fmelieense
/ | |
Dg | ITransmission ([) ISyntaxHiIIght'
|
| ~ |
| e ______ —_ 1 - 9_ L
J | - z intell 1 sense|
E I «subsystem» i
= t SyntaxAnalyzer T FnE = N
| function Intellisense
for easy entry of algorithmic
Transfers text of the program to the parser, structures, functions names
there is its detailed review executes. Analyzer etc. to facilitate
provides syntax highlighting structures in the code editor. writing code.

Fig. 5. Above is shown how the code editor component interacts with other components of the
programs demonstration environment.

1. An array generation block that includes options for generating the following patterns
or templates:
° An ascending array.
A descending array.
An array with one extreme point.
An array with two extreme points.
An array of identical elements.
An array of random variables.
2. A block displaying program global variables. All types except arrays can be
initialized in the text box next to the name of variable:
. Arrays of type Data.
o Logical variables.
o Integer variables.
o Real variables.
3. A block of data collection necessary for displaying data sets for global arrays:

o Adding specific variables in the list.
o Deleting generated data sets from the collection.
. Displaying the filtered data set, which includes display of those data sets that match

with the size of the selected variable in a block of global variables.
Only after the full generation of input data the visualization of the algorithm is possible. It is
implemented by the module Visualizer of program demonstration environment. After the

152

The Code Editor In The Architectural And Technical Design Strategy...

visualization, the user can see the results in the section, which is responsible for the computational
experiment.

With the help of computational experiments students have the opportunity to understand the
features of algorithms and understand the dependencies that explain their complexity [1].

4 Conclusions

The programs demonstration environment of the integrated environment for studying of the
course «Basics of algorithmization and programmingy gives many opportunities for efficient study
of this fundamental discipline, including [4]:

. A demonstration of how algorithms work;

. The possibility to perform computational experiments to study the complexity and
majorizability of sorting algorithms;

. The opportunity to summarize the results of the algorithm analysis in the comparison

of different methods of solving the problem.

Much more attention is given to carrying out computational experiments for studying
complexity and efficiency of algorithms wusing the integrated environment WebBAP
(weboap.ksu.ks.ua), developed at the Institute of IT Kherson State University.

In developing the new version of the « demonstration environment» we aim to create a
software application that extends the range of opportunities for effective learning of the basics of
algorithmization and programming.

REFERENCES

1. OcnoBu anroputMmizamii Ta mporpamyBanfasi. OOUYHCTIOBATEHINA eKCIepUMeHT. Po3B’s3aHHs
npobeM eeKTHBHOCTI B aITOPUTMaXx IMOIIYKY Ta copTyBaHHs: HaByaimsamii mocioHuK/A.B.
CmiBakoBcbkuii, H.B. Ocumnosa, M.C. JIeBoB, K.B. bakymenko. — Xepcon: Aimant, 2010. —
100 c.: in..

2. IlemaroriyHi TEeXHOJOTii Ta MEAAroriyHO OPIEHTOBAaHI MPOTPAMHI CHUCTEMHU: TPEIMETHO-
opienroBannii minxin /O.B. CmiBakoBcbkuii, M.C. JIeBoB, ['"M. KpaproB [ra iH.]
//KoMmm’rotep y mkodi ta cim’i. — Ne4(22), 2002 — C. 24-28

3. CmiBakoBcbkuit O.B. BineoinTepnperarop anropuTMiB IHTETPOBAHOTO CEPEIOBHIIA
BUBYCHHS Kypcy «OcHOBH anropurmizamii Ta mporpamyBaHHs» / CmiBakoBcekuii O.B.,
Komecunikoa H.B. // Hosi iHdopmarmiiini TexHonorii B OCBiTI IS BCIX: CHUCTeMa
enekTpoHHo1 ocBiTh. — 2008. — Ne 3. — C. 399-404.

4. AnpvopoB €.A. IHCTpyMeHTambHI 3aCO0M pPO3POOKH MPOTPAMHOTO KOAY, HAIHCAHOTO
MOBOIO MPOTPaMyBaHHs BHCOKOTO piBHS / €BreH AnzpiiioBnu Anpropos// [ndopmariitai
TEXHOJIOTIT B OCBiTi: 30ipHUK HayKOBUX mpaib. Bumyck 8. — Xepcon: Bumasauureo X1V,
2010.-C.91 -97.

153

