
© Lavrik A.

 154

UDC 004:37

PECULIARITIES OF CREATING PROGRAMMING ENVIRONMENT WITH
UNIVERSAL SUPPORT OF INTERPRETERS OF PROGRAMMING

LANGUAGES SUBSETS

Lavrik A.

Kherson State University

The article considers principles of extraction subsets of programming languages, sufficient
for performing computational experiments in the certain class of problems on example of sorting
algorithms.

Keywords: computer science, programming, sorting algorithms, videointerpreter.
INTRODUCTION
Within scientific research on using educational software in the pedagogical and methodical

process in Kherson State university a new version of educational programming environment for
visual demonstration algorithms of sorting and searching in arrays and comparing of their
efficiency, also known as “Videointerpreter”, is being developed.

The environment has complex structure and includes the following components:
 parser and interpreter of high-level programming language subsets (Pascal, C or Java,

further called target languages);
 sorting and searching procedures visualizer;
 smart program code editor;
 results statistics processing unit.
This article will consider principles of creating high-level languages parser and interpreter.

The target languages will be compared for extracting their most common features, which can
provide ability of sorting and searching algorithms implementing. Syntax and semantics of target
programming languages and of tools for their describing will be the object of research.

Requirements for programming languages subsets implementation
Sorting algorithms are based on comparing and swapping operations. Namely their quantity

depending on sorted elements' count defines the algorithm's efficiency — it's complexity. Simple
algorithms, in particular bubble and insert sorting, have O(n2) complexity in the worst case, and
may have O(n ∙log n) in general case; effective ones, such as quick sorting, have complexity O(n
∙log n) in the worst case. But this doesn't exclude possibilities of outstripping effective sorting
algorithms by simple ones on some data sets, for example on short sequences. Such cases can
become objects of research, in particular for what “Videointerpreter”system is being developed.

Let's generalize requirements for target programming languages implementation. Extracted
subsets should provide sorting algorithms describing. The following language's properties and
elements will be required for that:

1. procedural programming paradigm — Pascal and C are procedural languages, Java
can imitate procedurability with a help of classes' static methods;

2. standard integral data types (for using as array indeces and loop parameters) and
boolean type (for using in conditional statements) and operations with them — present in all target
languages:

Pascal: integer, boolean;
C, Java: int, bool1;
3. additional abstract data type data and comparing operations for it — it's missing in

1 Though in С usually integral values are used as boolean ones (0 — false, other numbers — true), for the C99

standard bool type with vlues true and false also presents;

Інформаційні технології в освіті

Peculiarities Of Creating Programming Environment With Universal Support...

 155

target languages and is the environment innovation;
4. constants declaration:
Pascal: const name [: type] = value ;
С: const type name = value ;
Java: final type name = value ;
5. variables declaration:
Pascal: var name1 [, name2…] : type;
C, Java; тип name1 [= value][, name2 [= value] …];
6. sequences (one-dimensional arrays) declaration:
Pascal: var name1 [, name2 ...] : array [lower..upper] of type;
C: type name[length] [= { [value [, ...]] }][, ...] ;
Java: type[] name [, ...];
7. subroutines declaration:
Pascal: procedure name [([var] name [, …] : type [; ...])] ;
function name [([var] name [, …] : type [; ...])] : type;
C: {void|type} name (type [&]name [= value] [, ...]
Java: {void|type} name ([type name [, ...]]);
8. algebraic expression notation is present in all languages. In different languages

operations can have different priority (for example comparing operations are performed before
logical ones in Pascal, and after them in C and Java) and designation, difference in which is
submitted in the table:

Operation Pascal C and Java
Integer division div /*
Remainder of division mod %
Logical operations “and”, “or”, “exclusive or”, “not” and, or, xor, not &&, ||, ^, !
Bitwise operations “and”, “or”, “exclusive or”, “not” and, or, xor, not &, |, ^, ~
Bitwise left or right shift operations shl, shr <<, >>
Operations “equal” and “inequal” = , <> ==, !=
Conditional choice operation missing ? :
Type casting operations missing (type name)

9. value assignment — main operation of any imperative languages:
Pascal: name := expression;
C, Java: name [operator] = expression;
where operator — + , – , or another operator designation, expression — algebraic expression

(in C and Java another assignment statement may perform as expression);
10. comparing operations < , > , ≤ , ≥ , = , ≠ , both for type Data, and integral types:
Pascal: < , > , <= , >= , = , <>;
C, Java: < , > , <= , >= , == , !=
11. conditional branching statement:
Pascal: if expression then … [else ...];
C, Java: if (expression) … [else ...];
12. loop organizing statement:
 with precondition:
Pascal: while expression do ... ;
C, Java: while (expression) ... ;
 with postcondition:

* If integral values are used as operands.

© Lavrik A.

 156

Pascal: repeat ... until expression;
C, Java: do { … } while (expression);
 with parameters:
Pascal: for name := start {to|downto} finish do …;
C, Java: for (
[{declaration|assignement}];
[condition_expression];
[modifying_expression]
)
…;
13. subroutine call with parameters, including recursive (for using in quick sorting

methods):
Pascal: subroutine_name [(parameter1[, ...])];
C, Java: subroutine_name ([parameter1[, ...]]);
14. return from subroutine statement:
Pascal: exit;
C, Java: return [expression];
15. comments:
Pascal: { multi-line }
C, Java: // single-line
/* multi-line */
Software development
As a tool for implementing the educational programming environment for visual

demonstration creating project we chose Mono — cross-platform Microsoft .NET and C# language
implementation. It was preferred before other tools for the following reasons:

 rich and expressive C# language features;
 wide set of classes in Mono/.NET libraries;
 ability to use Moonlight tool — Microsoft Silverlight analogue for animated objects

creating;
 convenient integrated development environments Visual Studio and Mono Develop;
 team members' experience of work in Microsoft .NET.
For successful completing of works' part on target languages subsets parser and interpreter

development it's ought to use already existing solutions, namely parser creating tools. Among the
most popular tools ANTLR, lex + yacc, bison and so on can be marked. Each solution has it's
advantages and disadvantages. But it was decided, that from them all namely ANTLR mostly
satisfies our needs, because it:

 has convenient and understandable syntax for describing parsing rules, which is send
to the program input;

 on the output it generates classes for lexical parsing an AST-tree constructing and
walking through on high-level language, role of which can play Java, C++ and, what's the most
important, C# (most of other instruments generate code on C/C++/Java);

 has special development and debug environment ANTLRWorks — multi-windowed
editor, which supports rules syntax highlighting, autocompletion, visual displaying of grammacy,
which is built in real time during text input, debugger, refactoring tools etc.

Language elements extracting
Syntax elements of describing languages can be divided into groups:
 insignificant syntax elements — that is comments and whitespace;
 declarative — which declare program objects;
 executable — statements, that will be executed during the program running. In the

target languages they are placed in functions', procedures' and main program's (in Pascal) bodies.

Peculiarities Of Creating Programming Environment With Universal Support...

 157

Within the problems set before us, declarations of the following objects may be included
into the declarative group: variables, constants, arrays, subroutines. Declarations of variables and
constants may be nested into subroutines. Also the declaration of header object — program in
Pascal and the main static class in Java – may be classified as declarative object.

The following kinds of statements will belong to executable:
 expressions (as part of all other types of instructions);
 assignment;
 branching;
 loops;
 loop continuation;
 loop interrupting;
 subroutine calls;
 returning from subroutine.
So the next table for program elements classes appears:
Class Derived Description

ProgramElement Base class for all program elements
Insignificant ProgramElement Base class for all insignificant program elements
Whitespace Insignificant Whitespace
Comment Insignificant Comments
TypedElement ProgramElement Base class for typed program elements
Expression TypedElement Expression
Constant TypedElement Constant
Variable Constant Variable
Subroutine TypedElement Subroutine
Statement ProgramElement Statement
Assignement Statement Assignment value to a variable
Branching Statement Branching
Loop Statement Loop
LoopContinue Statement Loop continuation
LoopExit Statement Loop interrupting
SubroutineCall Statement Call of subroutine
SubroutineExit Statement Returning from subroutine

Now implementation of target languages subsets consists of describing above-stated

language elements in ANTLR syntax. According to this description a set of classes on the selected
language (C# in our case) for lexical parsing source code on Pascal language and algorithm tree
constructing is generated. After analogical describing of C and Java language grammacy we'll get
an ability to create trees with same structure from the source codes of different languages.

For tree walking a special class Walker is used. In environment which is developed it will
provide interaction and data exchange between interpreter and other program components on the
base of events subscribing and handling mechanism. For example calculation of exchanges quantity
in statistics processing unit can be implemented by subscribing on the event Swap, animation of
comparings — subscribing on the event Comparing.

© Lavrik A.

 158

From the above-stated the conclusion can be made, that chosen way of extracted
programming languages subsets implementation provides uniformed processing of program
structural trees, and the most rational and flexible architectural construction of the project. In
perspective it will give an ability to extend supported languages subsets and include new imperative
languages to their number in way of describing their syntax by the shown scheme. To it's users
multilingual environment also gives an ability as visually compare and learn rapidly syntax and
semantics of different programming languages, so develop skills of algorithmic thinking, not fixed
on the features of concrete language.

REFERENCES
1. Йенсен К., Вирт Н. Паскаль. Руководство для пользователя и описание языка. – М.:

Финансы и статистика, 1982. – с. 250.
2. Б.В. Керниган, Д.М. Ричи, А.Фьюер. Язык программирования Си. Задачи по языку Си.

М.: Финансы и статистика, 1992. – с. 320.
3. Мейнджер Джейсон. Java: Основы программирования / Пер. с англ. С.Бойко под ред.

Я.Шмидского. – К.: BNV, 1997. – с. 460.
4. Роберт Седжвик. Фундаментальные алгоритмы на C. Анализ/Структуры

данных/Сортировка/Поиск – СПб.: ДиаСофтЮП, 2003. – c. 680.
5. Terrence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages —

Oxford Associated Press, 2008. – c. 740

