
© Klenov D.M., Syedov A.O.

 118

UDC 004.738.5: 519.85

GENERAL FRAMEWORK FOR PUBLISHING OF MATHEMATICAL WEB

APPLICATIONS

Syedov A.O.

Deputy Director of Department of Innovations and Technologies’ Transfer,

Ministry of Science and Education of Ukraine.

Klenov D.M.

Laboratory of development and implementation of pedagogical software

Research Institute of Information Technologies

Kherson State University

This system would allow an easy way to bring mathematical applications to the Internet.

Although the automated generation of PhP scripts is a simple task, there is no system that would

allow bringing mathematical application written in any locally based system to the web. The main

part of such system is simple XML-based language that fully describes source mathematical

application.

Keywords: XML, web publishing, mathematical programming, framework.

This project is guided by the Prof. Wolfgang Schreiner of the Research Institute for

Symbolic Computation (RISC), Johannes Kepler University, who has decided the main problem of

the project. W. Schreiner developed the first version of XML-based language that is the main part

of entire project, and the Discrete Wave Turbulence web application, that is the best example of

how the automatically generated web-applications will actually look like.

Statement of the problem in general outline and its connection with important

scientific and practical tasks;

The main goal of entire project is to develop an easy way for publishing of mathematical

software into the web. A source mathematical application can be written in any programming

language C++/C#/Java/APS/Prolog etc. By this moment there also are a lot of systems of computer

algebra like Wolfram Mathematica, Maple, MathLab, they are providing an appealing

GUI(Graphical User Interface) for executing the computations and presenting a result.

However to use such systems like, for example Mathematica, you have to install it locally on

your computer. Mathematical programmers mostly have deal only with specified part of such

systems or programming languages that can be used to implement some methods they are working

at. The main problem of such way is portability.

To solve this problem it is obviously that mathematical methods must be implemented as

web-applications. Our system will allow mathematical programmers to get such web

implementation without actually PhP coding. The only thing a mathematical programmer will have

to do is to upload his math application written in any language he likes most, with some description

of it, and he will receive an automatically generated web-application that implement his method.

Analysis of the latest researches and publications, in which solution of a problem is

initiated and which serve as a background for the research;

Of course nowadays there are a lot of various ways to generate simple web pages

automatically. As locally based application shall be transformed into a web service, there is no

actual need of using “heavy” web applications like for example Java applets or Silverlight

applications, of course if the implementation of mathematical method do not require a building of

3D models or some sort of dynamic graphical drawing. There is no problem with automated

generation of simple HTML pages with minimum Java-scripting. If current implementation would

require a complex graphics then system must also generate a Java applet. This can be easily done

through ANTLR(Another Tool for Language Recognisation) for example that can generate any type

Інформаційні технології в освіті

http://multitran.ru/c/m.exe?t=2248817_1_2

General framework for publishing of mathematical web applications

 119

of Java/C++/C#/Action Scripts applications using a grammar. So there is no problem of automated

generation of simple web interfaces and even Java applets automatically

Sorting out of unsolved aspects of the general problem, which the article covers;

The main problem is “How to bind the application written as locally based to that

automatically generated web interface?” Not every language can create cross-platform applications.

Statement of the object of article (problem definition);

It is obvious that there must be some description of mathematical program to make the

transformation into a web service possible. Such description has to include all required information

and would be developed as a simple XML-based language, containing various sets of nodes divided

into three sections:

1. Nodes containing information about the language that was used to make a source

mathematical application, with descriptions of all additionally included libraries (in the worst case

this libraries should also be uploaded to the server alongside with application itself), source

architecture description(there is no guarantee that application written under 32-bit architecture will

run under 62-bit architecture in the same way, and there is almost no possibility of running 62-bit

application under 32-bit system), target architecture description, and operation system version that

the source mathematical application was based for(Windows/Mac/Unix).

2. Nodes containing information about all of input/output parameters, as the set of variables.

Every variable will have a value of concrete type, taken from the General Type Library. Such

library has to be created to make access to the variables types of various computer algebra systems

or computer language we are going to support. Every time we add new language to our Framework,

we’ll have to update this Library. Variables will have unique names, used to create links between

nodes and parts of the web interface. The second part of this section is the nodes representing the

computations performed by the mathematical program. It is very important to store the computation

results, to make graphical buildings much easier, and to allow an option of saving them on client

computers.

3. Nodes containing a simple description of user interface.

Summary of the basic material of research with complete argumentation of the

obtained scientific results;

Our system of automated web application generation must include all compilers and

interpreters of language and mathematical systems we are going to support. It is obvious that if we

have a Mathematica script, there have to be a Wolfram Mathematica to execute it. More than that,

we’ve discovered that a concrete example (Discrete Wave Turbulence web application that was

created manually by W.Schreiner and can be found on the CENREC portal, this web application is

also the best example of how the automatically generated web applications would look like)

implemented in Mathematica5.2 does not completely works with Mathematica6.0. This means that

we also must have not only all the systems installations on the server, but also a lot of versions of

them (this is where we also may face to the version compatibility of systems, will for example

Mathematica5.2 work fine if Mathematica6.0 is also installed (I just took Mathematica as

preliminary example, this computer algebra system do not face such problem under Linux)). The

third part of that system is some sort of a framework that will parse the XML-based algorithm

description, and send all necessary data to the automated system of web user interface generation.

After the web interface is generated, framework will have to check the source mathematical

application itself no matter of the system used to make it, and link this application to the web

interface. In our case linking means “wrapping” of it as the web service and binding the invoking of

methods to the parts of automatically generated web interface. On the Pic.1 below you can see the

basic diagram of this system.

© Klenov D.M., Syedov A.O.

 120

Pic.1

As we can see user must upload his mathematical application alongside with XML-based

description to the specified folder on the server. This action is to be done via a simple web interface

(Of course it’s obvious that it would be much better to make also a web interface for generating the

XML description file and some sort of WebFtp for uploading, but for the first time it will be quite

enough to create this file manually). After the upload will be completed correctly the framework

takes it’s part, description is taken to the parser that gathers all information about the mathematical

application.

The main problems will begin after the application is recognized by the system. Pre-

compiled libraries (for example C++ libraries) are not always completely portable. The RISC server

where the system will be based is running under the operating system Debian Linux. If this library

was first compiled under any version of Microsoft Windows or MAC OS, there is no guarantee that

it can be running under Linux in the same way. Of course there are a lot different possibilities of

running Windows applications under Linux, for example Wine. But any of such ways may not offer

100% efficiency. In our case we’ll have to use all of them. On the other hand if application is given

as source code, this task will become much more simplified. Source code can be re-compiled under

Linux, but still the portability problem remains, if application uses some platform-specific libraries

that are available for Windows only for example. (As I said before such library should also be

uploaded to the server and run under the Wine). If application was written in Microsoft Visual

Studio beginning with .Net version, then we’ll have to use MONO (.NET Framework implemented

under Unix). Every variable declared in XML is description specifies one input/output parameter of

the algorithm. Each variable is of a concrete type. This type is taken from the General Types

Library that is the part of a Framework. This Library contains description of all types available in

supported languages and mathematical systems.

System of automated web interface generation is the most easy to develop part of entire

project. It only works with the user interface section of XML description and generates HTML (or

probably some times with minimum java-script) web interface according to it. The main problem is

that every User Interface element must have an attribute “name” that is the name of a variable

created before.

General framework for publishing of mathematical web applications

 121

Final part of the Framework is Linker. This will be the most complex scripts-based

environment whose task is to link the mathematical application uploaded by the user to the

automatically generated web interface. Linker uses variables only of those types that are described

in the General Types Library.

All of the computations are done on the RISC server, and in future the possibility of saving

the computation results on the client computer is also has to be implemented.

Conclusions of the given study;

As we can see the most important part of a project is the XML description, containing all

information about mathematical algorithm, in a simple meta-language. I have already described

three types of nodes that are anyway to be implemented. Below you can see a preliminary example

of such language.

--main information nodes

<SMWML >

<language=”C++” compiler=”gcc” platform=”Windows”>

<library>

DiscreteWaveTurbulence`SolutionSet

</library>

</language>

--varset nodes

<workflow>

<varset id="input">

<var id="domain" format="integer" />

</varset>

</workflow>

--user interface

<GUI>

<page>

<frame name="inputarea">

...

<form id="input"> % form bound to varset input

<input name="domain" > % bound to var input

<input type="submit" value="Create Solution Set">

</form> ...

<frame name="set"> % inline frame bound to varset set

</page>

</GUI>

</SMWML>

The entire document is to be bracketed between the nodes <SMWML></SMWML> that

specifies that this document contains description of mathematical algorithm. There is a possibility

that there may be not a single XML file in the specified folder, the mathematical application itself

may use XML for some inner purposes. But only one XML document must be tagged with

SMWML upper tag. This means Simple Mathematical Workflows Description Language as this

language also describes the flows of data between the parts of mathematical application in some

point of view. The second level nodes are tagged with <language></language>

<workflow></workflow> <GUI></GUI>. The first section describes the general information about

the mathematical application: what language was used to write an application, what system was

used to make it. If application was written for example in Mathematica than we must say what was

the version of Mathematica. And of course what was the operation system. As we use Linux as the

server base, we will face with porting problems when mathematical application was written under

Windows. I’ve already told about the possibility of using systems like Wine for solving this

problem. As we can see this part also contains description of all libraries used by mathematical

application.

© Klenov D.M., Syedov A.O.

 122

The second section is the workflow section. It contains all description of variables. Variables

are joined into varsets. Parameter “id” is a unique name that will be used for linking the program to

the web interface.

The User Interface Section contains preliminary description of web interface. As we can see

these nodes are not the exact HTML tags. They are only a simple description. For example

“button”, “textbox”, etc. This part is used to generate web application automatically, and link it with

variables. The only thing that is important is the id parameter. Linker will use this parameter value

for linking all the parts together. A variable with id=”domain” will be linked to any user interface

part that also has id=”domain”.

Prospects of the further research work in this area.

Once completed our system will follow the general trend in computer science which turns

away from “stand alone” software (that is installed on local computers and can only be executed on

these computers via graphical interface) and proceeds towards service-oriented software (that is

installed on remote server computers and transforms each method into a service that can be invoked

over Internet via standardized Web interfaces). The mathematical methods will become remote

services that can be invoked by clients without requiring of a local software installation.

BIBLIOGRAPHIC REFERENCES

1. Job Description language – comprehensive description language for specifying program

(job)requirements is JDL which is used in some grid middleware

[https://edms.cern.ch/file/555796/1/EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf] 03/05/2006

JRA1-Middleware

2. Glue Information model specification 2.0 [http://www.ogf.org/documents/GFD.147.pdf] March

3,2009 GFD-R-P.147

