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Introduction 

In 2009 Research IT department of Kherson State University (KSU) started to implement 

the prototypes of product that could be used for collecting opinions on arbitrary events and persons. 

The project got name “KSU Feedback”. The first real use of service had a goal to collect feedback 

from KSU students to estimate quality of education process. The service provided an ability to 

create polls online, fully automated process of gathering results, granted the anonymity of the 

respondents, but at the same time allowed to strictly delineate the set of participants, produced the 

real-time aggregated results visualized on the chart. The obtained data could be stored and then used 

for comparison with the results collected using the same poll, but for different time interval.  

Since that time it was decided to extend the sphere of usage of “KSU Feedback” and, based 

on experience we had, to create a platform that could cover most needs appearing during the 

organization of the feedback process in various cases. In other words, we were going to write a 

complete platform for automation of the process of building the so-called “360 degree feedback”.   

We defined several categories which the end product should be applicable to: 

– Estimation of human resources  management in corporations; 

– Creation of personal CVs;  

– Online fast feedback from the third-party applications; 

– Marketing research. 

Of course, at the moment of writing the specification we were aware of basic requirements 

to the target system but anyway we could not define the exact set of functionality that would be 

required in particular usage. So even final version of the project vision still contains unclear places 

which potentially can be extended or changed in future when we will have refined the requirements. 

From the point of view of our experience we understood that the system would be complex 

and require a lot of development work. We planned to split the project into a common functionality 

part (a core component) and concrete implementations (sub-projects) which would use the core.  

Summarizing all above, we can say that we came across a problem of developing complex 

IT system with partially defined requirements. As a solution for this problem we considered the 

possibility of creating such application architecture that would help us to implement the part of 

functionality which is clearly specified and then complete it with functionality for discovered 

ongoing needs. We have found it useful to make a research of the optimal architecture that might be 

applied in such situation and did not even exist.    

Thus, the complex system “KSU Feedback” with partially-known requirements naturally 

became the object of our research and thereafter its architecture was accepted as a subject of 

investigation. 
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In our opinion, the obtained results can be treated as successful if they solve the problems 

listed below: 

1. Architecture specifies the way of adding completely new modules which  reuse the existing code 

base; 

2. Architecture allows extending already existing modules by adding only task-specific code; 

3. Architecture helps avoiding massive code refactoring after having made changes of requirements 

to core part; 

4. Architecture defines a strict way of extending the existing type of functionality with additional 

features; 

5. Architecture allows splitting the project into independent units of work. 

In the best case we expect to design an architecture that should help the “KSU Feedback” 

project achieve the following goals: 

1. Quickly react on functionality changes; 

2. Easily extend the service with the existing kind of functionality (for example, adding new types 

of question, voting process, data export format, etc.); 

3. Always have independent pieces of functionality responsible for their own single task;  

4. Always have a working, runnable version of the application including at least a limited set of 

functionality. 

In our research we consider the best practices of architecture design, try to find concepts 

which can help bringing the flexibility into the project and make an attempt to apply this concept in 

architecture of “KSU Feedback” service. 

Investigation 

In the introduction we described goals and tasks the end architecture should be able to solve, 

but it produces a logical question: is it ever possible?  

During the initial gathering of the requirements we used Domain Driven Design (DDD) 

methodology and, as a result, we got an extensive set of objects which take a part in service 

working cycle. Thus, we decided to use object oriented paradigm in our architecture.  

Object oriented programming (OOP) already has known list of recommendations and best 

practices to go through and even set of typical mistakes which is better to avoid (anti-patterns).  But 

it is important to understand that none of them is kind of “panacea”. Each solution solves specific 

problem and has its motivation to use. For this reason we made a research of recommendations 

which, on our opinion, can help to reach declared tasks. We made main focus on solutions which 

usually used to make objects independent, interchangeable and have uniform processing. 

But big variety of options to go has raised a problem of estimation each of the solution. In 

other words we wanted to know based on what criteria we can conclude the solution is good or bad.  

We investigated known scales which usually applied to the architecture and among not big set of 

alternatives we stopped on SOLID concept identified by R.C. Martin. 

SOLID is design principle and is acronym of five concepts which must be complied: 

1. Single responsibility principle – an object should have only a single responsibility [1] 

2. Open/closed principle – software entities should be open for extension, but closed for 

modification [2] 

3. Liskov substitution principle – objects in a program should be replaceable with instances of their 

subtypes without altering the correctness of that program 

4. Interface segregation principle – many client-specific interfaces are better than one general-

purpose interface [1] 

5. Dependency inversion principle – "depend upon Abstractions. do not depend upon concretions" 

[3] 

At this point when we can estimate the solutions we are ready to search for the best patterns 

which can be applied to cope with the concrete technical problems listed in the introduction. We 

also kept in mind that it is not necessary to have a complete flexibility for totally all parts of 

architecture. The important points are only: 

– General application infrastructure 
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– User interface changeability 

– Communications between the components and database 

Below we listed only those solutions which were the nearest candidates to be involved in 

final architecture design. 

Common Application Infrastructure 

Since the main accent in a context of partly-known requirements is system extensibility we 

need to organize linking between different modules (in terms of our application). Thus ideal 

architecture will allow us to add an instance of particular helper object into pool of available objects 

just by declaring this class guided by some known conventions.  

There is special programming technique, designed to solve this architecture problem called 

Inversion of Control (IoC), which opposite to canonical programming flow when objects are 

statically assigned to one another, allows to assemble object graph in runtime by defined object 

interactions through abstractions.  

The basic idea there is to have separate object, an assembler, typically implemented in some 

framework\library (IoC container), that populates fields of the object with concrete appropriate 

implementations [4]. It will be known which implementation should be used only in runtime, for 

example after classpath scanning. The author of this concept, Martin Fowler [4], suggests the 

following example for explanation of the concept: Let’s assume that we’re writing a component that 

provides a list of movies directed by a particular director. Let’s call this component MovieLister. It 

asks a finder object (which we'll get to in a moment) to return every film it knows about. Then it 

just hunts through this list to return those directed by a particular director. UML diagram for this is 

shown on Figure 1. 

 
 

Fig. 1. The dependencies using a simple creating in the listener class 

 

The question there is how to connect MovieFinder object to MovieLister and how minimize 

development in case when we need to replace implementation or if we need more than one 

MovieFinder implementation, and even don’t know who and when will extend our project with this 

new implementations? Traditional approach is to instantiate necessary implementation somewhere 

in MovieLister, most likely in constructor. But this will require from developer modification of the 

code of MovieLister just for replacing implementation. And that is the main issue there especially if 

MovieLister is distributed as compiled assembly and developer hasn’t ability to change it. To avoid 

such situation IoC container provides assembler which is responsible for instantiation and linking 

objects to each one another. Thus, using IoC we will get the following:  

Definitely the example, described above is a bit synthetic but in real application with huge 

amount of objects and dependencies benefits of using IoC are more obvious. 

User Interface Layer 

This is another important part of application design, since due to the nature of the project it 

will provide complex UI controls (e.g. poll editor). Also we need to keep in mind that the service 
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will be Web-based, so the communication between users and logic that responds on their request 

will be done through stateless HTTP protocol.  

 

 
 

Fig. 2. The dependencies for a Dependency Injector 

 

But the main goal here is to achieve full independence between complex business logic and 

fancy interface that would help us to have strictly separated pieces of work.   

After investigation of UI patterns we found the Model-View-Presenter (MVP) pattern as the 

one that best fits our needs. It deserves the role of main principle of interaction between “KSU 

Feedback” application and the users. 

The concept behind the MVP pattern is that an implementing application should be splitted 

into three core components; Model, View and Presenter: 

– The Model component encapsulates all Business Logic and Data in the application. This 

may be a database transaction or a call to a web service, etc. 

– The View component represents the application’s Presentation layer (User Interface); 

this may be a standard Win Forms client, an ASP.NET Web part or Mobile client. In the 

MVP pattern, the View should be simplistic and responsible for rendering and accepting 

user input only. 

– The Presenter component is responsible for orchestrating all the application’s use cases. 

For example a sample operation would involve; taking user input from the View, 

invoking operations on the Model and if needed, setting data in the View to indicate the 

operation’s result. [5] 

 

 
Fig. 3. MVP components 
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On a Figure 3 we can see, objects which are invoked into process of handling user’s actions 

exists outside of each other and communicate through some defined interface. 

Transaction Management 

Since the most of DB related operations should be transactional, in other words if to perform 

any action on DB complex entity which causes execution of a set of atomic DB operations, we need 

to have an ability to rollback already executed of atomic operations in case of fail one of this 

operations. According to the widely used concept when data manipulation methods are 

implemented in special objects, designed for managing specific type of persistence entity. Such 

objects are called Data Access Objects (DAO). Thus typical method of the DAO class should look 

like the following: 

 

Typical DAO method structure 

class CompanyDao implements ICompanyDao { 

....................... 

@Override 

public Company lockCompany(Company company, User locker, String reason) { 

getCurrentSession().beginTransaction(); 

try { 

// Do some DB operations (inserts, updates, selects) 

getCurrentSession().commitTransaction(); // Commit on success 

} catch (RuntimeException e) { 

// Rollback if failed somewhere 

getCurrentSession().rollbackTransaction(); 

} 

} 

....................... 

} 

It is easy to see that in each method we need to open transaction on the begining, close it at 

the end, rollback in case of runtime exception. To avoid duplication of this code, and make it more 

readable it is possible to use Proxy objects which will do transaction related logic before and after 

original method call. Proxy is well-known design pattern, Figure 4 illustrates appropriate UML. 

 
 

Fig. 4. Proxy pattern in UML diagram 

 

The same fragment using such approach will look like the following: 

DAO method using proxy for transaction management 

class CompanyDao implements ICompanyDao { 

  ....................... 

  @Override 
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  public Company lockCompany(Company company, User locker, String reason) { 

      // Do some DB operations (inserts, updates,  

  } 

  ....................... 

} 

 

Event Driven Internal API 

To make possible development of both extension modules without modifying main code and 

web services with instant event notification we need to provide an ability to hook a moment when 

some event occurs, e.g. poll has been created; respondent committed his vote, etc. Since it is well-

known task there is design pattern, called “Observer” which helps to implement transmitting event 

information to the client once event has been fired. 

 
 

Fig. 5. Observer pattern in UML 

 
The intent is to define a one-to-many dependency between objects so that when one object 

changes state, all its dependents are notified and updated automatically [6]. Thus, each module can 
subscribe on events which it is interested in by implementing special observer interface and 
registering it in observer repository. The core module should call notifyObservers() method of the 
repository object once it is time to notify clients that some event has been occurred. Observer 
repository will call notify() method for each of registered observers. 

Implementation 
All the problems we were looking solutions for, have their reflection in concrete scope of 

functionality that needs to be done in “KSU Feedback”. Thus, let us bring more specificity and 
provide the list of program parts which are the most critical from the perspective of the tasks we 
have declared in introduction: 

– General application ecosystem – part that organizes communication between all layers 
of application, defines project structure, provides with a context at all points of program 
life cycle. 

– User interface components and interacting with user layer – part that is responsible for 
displaying the information to user, reaction on his actions, invocation of appropriate 
logic. 

– Component “Poll” – part that can display set of questions of different types to user.   
– Voting access control - part that provides an ability to specify which  groups of people 

can access a particular voting by different conditions. 
It was already decided to use Java language and Java Development Kit (JDK) platform in 

development, so it came possible for us to extend technological stack with ready solutions which 
implement necessary part of architecture.  

Below we take a closer look at each of parts introduced above. 

General application ecosystem 
Summarizing requirements we defined before, and finding known techniques for building 

flexible independent components we selected Spring framework as the one which implements a lot 
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of architecture design parts we need: IoC container, annotation driven configuration, managing 
objects life cycles. As result we have very flexible context with easy configuration. 

To split huge application on the big reusable parts, responsible for a certain type of task we 
divided it on projects, which will be compiled on the separate binary modules: 

– common – library which contains common utility methods, object definitions which will 
be widely used by almost all other parts 

– domain – models in terms of MVC methodology annotated with persistence 
annotations. This is also a library which doesn’t contain any business logic. 

– api – library contains interfaces and public facades for application interfaces. This will 
allow as in future easily prepare SDK for 3-rd party developers or change business logic 
covered by default implementations of these interfaces. 

– service – this library contains actual implementation of the business logic. Most of the 
classes implements interfaces defined in api project. 

– web-common – library which contains common reusable UI components. 
– web-corporate – actual web application for corporate edition. 
– web-personal – web application for Personal Feedback (simplified and personal-

oriented service). 
– worker – daemon in linux terms, which performs scheduled background tasks like bulk 

e-mailing, cleaning db, etc. 
Figure 6 illustrates all these projects in UML 
 

 
Fig. 6. Project structure 

 

Such approach along with idem Spring allows us to add or even replace implementations of 

the defined interfaces without recompiling previously created modules. The following example 

from our project illustrates using of dependency injection for building flexible application. 

 
Fig. 7. Typical dependencies between classes from the Service project in UML 

 

On the Figure 7 we have interface PollService which represents a collection of business 
logic methods related to polls, its implementation, called PollServiceImpl, interface PollExporter 
which represents the object responsible for exporting given poll in different formats and finally 
concrete realizations of the PollExporter for exporting in XML and PDF.As you see from UML 
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abowe both of exporter implementations use PollService interface below the hood, but doesn’t 
know anything about implementation of the PollService. This allows us to replace implementation 
each of these classes from the one hand and add another implementation from the other.  

The most interesting part there is creating and linking concrete classes. IoC container is 
responsive for doing this job automatically before application start. 

Let’s look at the code snippets below. 
PollServiceImpl class 
@Component 
public class PollServiceImpl extends EntityServiceImpl<Poll> implements PollService { 
.......................... 
} 
 

PollXmlExporter class 
@Component 
public class PollXmlExporterImpl extends AbstractXmlExporter implements  PollExporter { 
     ................... 
    @Autowired 
    private PollService pollService; 
     ................... 
} 
 

PollPdfExporter class 
@Component 
public class PollPdfExporterImpl extends AbstractXmlExporter implements  PollExporter { 
    ................... 
    @Autowired 
    private PollService pollService; 
    ................... 
} 

We use annotation driven configuration which is more flexible and allows avoiding XML 
declarations for each managed bean. Each class which is annotated with @Component annotation 
will be picked up by IoC container. Such objects in terms of Spring are called managed objects or 
managed beans [7]. During context initialization, typically immediately after application start 
Spring will instantiate each managed object and perform dependency injection basing on existing 
meta information, defined in XML file or using annotations. 

To configure dependency injection we use @Authowired annotation which indicates that 
class field should be initialized with object instance from context. Since annotation doesn’t provide 
any information about required object injection will be done by type. This means that after 
initialization of the PollXmlExporterImpl for each field annotated with @Autowired IoC will try to 
find suitable object instance in context. In this example it will try to find a class which implements 
PollService interface since annotated field is of type PollService. 

The other good example is also widely used in project. It allows creating repositories of the 
objects basing on the classes available in classpath. Let’s look at the other UML.  

In this case we have another service which is for exporting votes to various formats. Again, 
each exporter implements VoteExporter interface and is annotated with @Component annotation. 
The main difference is in the VoteServiceImpl: 

VoteServiceImpl class 
@Component 
public class VoteServiceImpl extends EntityServiceImpl<Vote> implements VoteService { 
   ...................................... 
    @Autowired 
    private List<VoteExporter> voteExporters; 
   ...................................... 
} 
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Fig. 8. Repository of the Vote Exporters in UML 
 

Instead of auto wiring single object we annotated field which stores collection of 
VoteExplorers. Spring will detect this and put all available objects from the container which 
implements this interface. This feature allows us to extend functionality without modifying existing 
components. Thus it is easy enough to create a separate library, compiled independently from the 
main application which extend it with for instance new type of report or question fragment. Let’s 
assume that we would like to add exporter which allows exporting files in RTF format, but our 
application is in production already and we don’t want to rebuild it. Thus, here are the steps we 
need to go through: 
1. Create new project which depends on Api, Domain and Common projects. All these projects 

contain only interfaces and model definitions without business logic. 
2. Implement appropriate exporter interface and annotate it with @Component annotation. It’s 

important to say that we are able to use any of the services here by simple adding private field of 
the appropriate type and annotating it with @Autowire annotation. Even though we haven’t any 
of the implementations in our project they will be available in application context. 

3. Compile project in the .jar file and put it under the main application context path. 
After that our new exporter will be handled by IoC container and injected in VotingService 

along with other ones. 

User interface components and interacting with user layer  
Defined scope of functionality requires a lot of user interface views and forms. The problem 

is that components are not trivial and need to be reused in different places. Along with that we have 
very complex logic that depends on the data that user has entered. Obviously it would be nice to 
have the business and user interface logic separated.  Thus we decided to try to use the concept of 
MVP described before. But unfortunately Java does not provide ready MVP solution “out-of-box”. 
However there are a lot of free frameworks which do it. We stopped our choice on Apache Wicket 
framework, which in addition brings such benefits as completely pure HTML templates at View 
level, reusable components of Presentation layer and well abstracted at Model level.     

Besides, inside of the components we can use helper objects from the IoC container, which 
allows us to move all complex logic to special handler. Moreover we involved Callback pattern that 
gives to class’ users ability to inject custom handling logic for particular events (e.g. form was 
submitted, dialog was closed, etc.)   Thus particular component contains generic logic of  user 
interface objects creation, validation and internal interaction. Fig. 9 shows simplified class diagram 
for poll editor: 
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Fig. 9. Simplified UML class diagram shows relations between PollEditor components 

 

As you can see PollEditor object works with Model (Model layer) that encapsulates Poll 

domain object. All handling logic of it is done through PollService obtained from 

SpringIoCContainer. Clients of PollEditor (Presenter layer) can add their additional handling by 

setting PollFragmentCallback facade which methods will be called on particular events of 

PollEditor life cycle. View level is represented by pure HTML markup file that is linked to 

PollEditor.  

The great benefit here is that we can reuse each written component and have business logic 

separately.  All communications between service logic and Presentation layer are done via Model 

abstraction that encapsulates business domain object. Thus components can be reused everywhere 

in context that operates with the same business objects. 

Voting access control 

Because of “KSU Feedback” specificity, it is very important to control the access to the 

voting. Moreover, it is one of the main project features which give user several types of access 

limitation for voting process. In internal project terms the group of people which can reach the 

voting process through defined by user access criterias is target audience.  

Each target audience provides its own specific way of authorization.  User can specify the 

details in editor component and indicate what audiences he wants to include for particular survey. 

Then, it must be able to authorize the respondent by data he has provided.  So each target audience 

has to deal with a lot of responsibilities which we splitted into several classes. Fig. 10 shows class 

set that needs to be created per one concrete target audience (SinglePasswordAudience).  

The problem is that we do not have full list of target audience and most likely this part will 

be extended with new types of access in a future. Along with this we need to write a core 

component that will work with target audience in generic way without relying on any specific type. 

This task looks quite hard as handling process is type sensitive. That means, for example, that only 

one type of editor can edit one specific type of target audience; the same situation is with the rest of 

the components.  
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Fig. 10. Set of classes for concrete target audience 

 
Obviously, it would be much easier if we would have some object that contains all necessary 

information about relationship between target audience and its helper components.  For this reason 
we created custom annotation @TargetAudienceMeta for encapsulation of meta information about 
each component that handles particular target audience.  It must present above declaration of each 
class that participates in working cycle of target audience. For example: 

@TargetAudienceMeta(type = SinglePasswordAudience.class) 
public class SinglePasswordCredentialsCollector{...} 

As you can see TargetAudienceMeta annotation indicates that 
SinglePasswordCredentialsCollector collects credentials information for target audience of type 
SinglePasswordAudience. The similar thing is done with editor and viewers components.  The final 
step was to write special class scanner that goes through specified package and looks for annotated 
classes.  As the scanner class implements event model and thus each time it founds appropriately 
annotated class it calls register method of TargetAudienceResolver class which implements the 
Repository design pattern. By the end of initialization we have fully instantiated repository that 
provides us with useful methods for resolving the types of helper objects for target audience (see 
Fig. 11). 

 
Fig. 11. Target audience repository in UML 
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Such approach gives us an ability to create a common logic that works with target audiences 

despite their type. It will get required information from TargetAudienceResolver instance.  

Moreover it helps split the work into independent units which are connected with each other only at 

meta-information level. 

Conclusion 

The problem of incompletely defined requirements for the critical parts of application 

demands big flexibility from architecture in order to be able to write the components in a future 

without any code refactoring.  We made investigation of best practices which can be applied to help 

achieve it. Based on the obtained results we tried to use them in architecture of most important parts 

of “KSU Feedback”.  

The result we got fully corresponds to SOLID principles we have used for estimation of 

quality of a solution, and that is necessary, however not sufficient condition that we designed an 

optimal architecture.   

But we already had a chance to approbate it as we have come through several iterations of 

“KSU Feedback” using this architecture. As a result it helped us to achieve the points listed below: 

4. It is easy to extend with new functionality (we were able to create formal instruction of how to 

extend particular parts). 

5. We write only project-specific code for personal and corporate versions of feedback.  

6. We always have runnable version of application. 

Of course we are sure we did not find the ideal way that can be applied for each product in 

all situations but at least it looks like it covers the goals we had at the beginning of our research. 

And even for our case it also how its downside. The problem is that architecture is very complex 

and requires big experience in programming and deep knowledge of several Java frameworks from 

developers. This was omitted during architecture design phase but can become a serious problem 

during the implementation, since each new team member should already have good experience in 

Java enterprise development. However this problem obviously is out of scope of this article and 

needs to be considered separately. 
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Херсонський державний університет 

ПРОБЛЕМА РОЗРОБКИ АРХІТЕКТУРИ СКЛАДНОГО ВЕБ-ДОДАТКУ  “KSU 

FEEDBACK ” В КОНТЕКСТІ ЧАСТКОВО ВІДОМИХ ВИМОГ 

Проблема розробки гнучкої архітектури для критичних частин додатку “KSU 

Feedback”, вимоги та об’єм робіт для яких визначені не вповній мірі. Досліджені 

рекомендовані практики для рішення такого типу задач, і показано як вони застосовані в 
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архітектурі “KSU Feedback”. 
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ПРОБЛЕМА РАЗРАБОТКИ АРХИТЕКТУРЫ СЛОЖНОГО ВЕБ-

ПРИЛОЖЕНИЯ “KSU FEEDBCK ” В КОНТЕКСТЕ ЧАСТИЧНО ИЗВЕСТНЫХ 

ТРЕБОВАНИЙ 

Проблема разработки гибкой архитектуры для кртических частей приложения “KSU 

Feedback”, требования и объем работы для которых не определены в полной мере. 

Исследованы рекомендуемые практики решения такого типа задач, и показано как они 

применены в архитектуре “KSU Feedback”.  

Ключевые слова: feedback 360, разработка, целевая группа, разработка программного 

обеспечения, архитектура, анкета 

 

 

 


