
ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 83

UDC 004:37

Alexander Spivakovsky, Sergey Tityenok, Dmitry Berezovsky, Yana Storozhuk,

Alexander Litvinenko, Nataliia Klymenko

Kherson State University

THE PROBLEM OF ARCHITECTURE DESIGN IN A CONTEXT OF

PARTIALLY KNOWN REQUIREMENTS OF COMPLEX WEB BASED

APPLICATION "KSU FEEDBACK"

The problem of flexible architecture design for critical parts of “KSU Feedback”
application which do not have full requirements or clearly defined scope. Investigated
recommended practices for solving such type of tasks and shown how they are applied in “KSU
Feedback” architecture.

Keywords: KSU Feedback Service, 360 degree feedback, survey, target groups, software
development, architecture, poll.

Introduction

In 2009 Research IT department of Kherson State University (KSU) started to implement

the prototypes of product that could be used for collecting opinions on arbitrary events and persons.

The project got name “KSU Feedback”. The first real use of service had a goal to collect feedback

from KSU students to estimate quality of education process. The service provided an ability to

create polls online, fully automated process of gathering results, granted the anonymity of the

respondents, but at the same time allowed to strictly delineate the set of participants, produced the

real-time aggregated results visualized on the chart. The obtained data could be stored and then used

for comparison with the results collected using the same poll, but for different time interval.

Since that time it was decided to extend the sphere of usage of “KSU Feedback” and, based

on experience we had, to create a platform that could cover most needs appearing during the

organization of the feedback process in various cases. In other words, we were going to write a

complete platform for automation of the process of building the so-called “360 degree feedback”.

We defined several categories which the end product should be applicable to:

– Estimation of human resources management in corporations;

– Creation of personal CVs;

– Online fast feedback from the third-party applications;

– Marketing research.

Of course, at the moment of writing the specification we were aware of basic requirements

to the target system but anyway we could not define the exact set of functionality that would be

required in particular usage. So even final version of the project vision still contains unclear places

which potentially can be extended or changed in future when we will have refined the requirements.

From the point of view of our experience we understood that the system would be complex

and require a lot of development work. We planned to split the project into a common functionality

part (a core component) and concrete implementations (sub-projects) which would use the core.

Summarizing all above, we can say that we came across a problem of developing complex

IT system with partially defined requirements. As a solution for this problem we considered the

possibility of creating such application architecture that would help us to implement the part of

functionality which is clearly specified and then complete it with functionality for discovered

ongoing needs. We have found it useful to make a research of the optimal architecture that might be

applied in such situation and did not even exist.

Thus, the complex system “KSU Feedback” with partially-known requirements naturally

became the object of our research and thereafter its architecture was accepted as a subject of

investigation.

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 84

In our opinion, the obtained results can be treated as successful if they solve the problems

listed below:

1. Architecture specifies the way of adding completely new modules which reuse the existing code

base;

2. Architecture allows extending already existing modules by adding only task-specific code;

3. Architecture helps avoiding massive code refactoring after having made changes of requirements

to core part;

4. Architecture defines a strict way of extending the existing type of functionality with additional

features;

5. Architecture allows splitting the project into independent units of work.

In the best case we expect to design an architecture that should help the “KSU Feedback”

project achieve the following goals:

1. Quickly react on functionality changes;

2. Easily extend the service with the existing kind of functionality (for example, adding new types

of question, voting process, data export format, etc.);

3. Always have independent pieces of functionality responsible for their own single task;

4. Always have a working, runnable version of the application including at least a limited set of

functionality.

In our research we consider the best practices of architecture design, try to find concepts

which can help bringing the flexibility into the project and make an attempt to apply this concept in

architecture of “KSU Feedback” service.

Investigation

In the introduction we described goals and tasks the end architecture should be able to solve,

but it produces a logical question: is it ever possible?

During the initial gathering of the requirements we used Domain Driven Design (DDD)

methodology and, as a result, we got an extensive set of objects which take a part in service

working cycle. Thus, we decided to use object oriented paradigm in our architecture.

Object oriented programming (OOP) already has known list of recommendations and best

practices to go through and even set of typical mistakes which is better to avoid (anti-patterns). But

it is important to understand that none of them is kind of “panacea”. Each solution solves specific

problem and has its motivation to use. For this reason we made a research of recommendations

which, on our opinion, can help to reach declared tasks. We made main focus on solutions which

usually used to make objects independent, interchangeable and have uniform processing.

But big variety of options to go has raised a problem of estimation each of the solution. In

other words we wanted to know based on what criteria we can conclude the solution is good or bad.

We investigated known scales which usually applied to the architecture and among not big set of

alternatives we stopped on SOLID concept identified by R.C. Martin.

SOLID is design principle and is acronym of five concepts which must be complied:

1. Single responsibility principle – an object should have only a single responsibility [1]

2. Open/closed principle – software entities should be open for extension, but closed for

modification [2]

3. Liskov substitution principle – objects in a program should be replaceable with instances of their

subtypes without altering the correctness of that program

4. Interface segregation principle – many client-specific interfaces are better than one general-

purpose interface [1]

5. Dependency inversion principle – "depend upon Abstractions. do not depend upon concretions"

[3]

At this point when we can estimate the solutions we are ready to search for the best patterns

which can be applied to cope with the concrete technical problems listed in the introduction. We

also kept in mind that it is not necessary to have a complete flexibility for totally all parts of

architecture. The important points are only:

– General application infrastructure

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 85

– User interface changeability

– Communications between the components and database

Below we listed only those solutions which were the nearest candidates to be involved in

final architecture design.

Common Application Infrastructure

Since the main accent in a context of partly-known requirements is system extensibility we

need to organize linking between different modules (in terms of our application). Thus ideal

architecture will allow us to add an instance of particular helper object into pool of available objects

just by declaring this class guided by some known conventions.

There is special programming technique, designed to solve this architecture problem called

Inversion of Control (IoC), which opposite to canonical programming flow when objects are

statically assigned to one another, allows to assemble object graph in runtime by defined object

interactions through abstractions.

The basic idea there is to have separate object, an assembler, typically implemented in some

framework\library (IoC container), that populates fields of the object with concrete appropriate

implementations [4]. It will be known which implementation should be used only in runtime, for

example after classpath scanning. The author of this concept, Martin Fowler [4], suggests the

following example for explanation of the concept: Let’s assume that we’re writing a component that

provides a list of movies directed by a particular director. Let’s call this component MovieLister. It

asks a finder object (which we'll get to in a moment) to return every film it knows about. Then it

just hunts through this list to return those directed by a particular director. UML diagram for this is

shown on Figure 1.

Fig. 1. The dependencies using a simple creating in the listener class

The question there is how to connect MovieFinder object to MovieLister and how minimize

development in case when we need to replace implementation or if we need more than one

MovieFinder implementation, and even don’t know who and when will extend our project with this

new implementations? Traditional approach is to instantiate necessary implementation somewhere

in MovieLister, most likely in constructor. But this will require from developer modification of the

code of MovieLister just for replacing implementation. And that is the main issue there especially if

MovieLister is distributed as compiled assembly and developer hasn’t ability to change it. To avoid

such situation IoC container provides assembler which is responsible for instantiation and linking

objects to each one another. Thus, using IoC we will get the following:

Definitely the example, described above is a bit synthetic but in real application with huge

amount of objects and dependencies benefits of using IoC are more obvious.

User Interface Layer

This is another important part of application design, since due to the nature of the project it

will provide complex UI controls (e.g. poll editor). Also we need to keep in mind that the service

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 86

will be Web-based, so the communication between users and logic that responds on their request

will be done through stateless HTTP protocol.

Fig. 2. The dependencies for a Dependency Injector

But the main goal here is to achieve full independence between complex business logic and

fancy interface that would help us to have strictly separated pieces of work.

After investigation of UI patterns we found the Model-View-Presenter (MVP) pattern as the

one that best fits our needs. It deserves the role of main principle of interaction between “KSU

Feedback” application and the users.

The concept behind the MVP pattern is that an implementing application should be splitted

into three core components; Model, View and Presenter:

– The Model component encapsulates all Business Logic and Data in the application. This

may be a database transaction or a call to a web service, etc.

– The View component represents the application’s Presentation layer (User Interface);

this may be a standard Win Forms client, an ASP.NET Web part or Mobile client. In the

MVP pattern, the View should be simplistic and responsible for rendering and accepting

user input only.

– The Presenter component is responsible for orchestrating all the application’s use cases.

For example a sample operation would involve; taking user input from the View,

invoking operations on the Model and if needed, setting data in the View to indicate the

operation’s result. [5]

Fig. 3. MVP components

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 87

On a Figure 3 we can see, objects which are invoked into process of handling user’s actions

exists outside of each other and communicate through some defined interface.

Transaction Management

Since the most of DB related operations should be transactional, in other words if to perform

any action on DB complex entity which causes execution of a set of atomic DB operations, we need

to have an ability to rollback already executed of atomic operations in case of fail one of this

operations. According to the widely used concept when data manipulation methods are

implemented in special objects, designed for managing specific type of persistence entity. Such

objects are called Data Access Objects (DAO). Thus typical method of the DAO class should look

like the following:

Typical DAO method structure

class CompanyDao implements ICompanyDao {

.......................

@Override

public Company lockCompany(Company company, User locker, String reason) {

getCurrentSession().beginTransaction();

try {

// Do some DB operations (inserts, updates, selects)

getCurrentSession().commitTransaction(); // Commit on success

} catch (RuntimeException e) {

// Rollback if failed somewhere

getCurrentSession().rollbackTransaction();

}

}

.......................

}

It is easy to see that in each method we need to open transaction on the begining, close it at

the end, rollback in case of runtime exception. To avoid duplication of this code, and make it more

readable it is possible to use Proxy objects which will do transaction related logic before and after

original method call. Proxy is well-known design pattern, Figure 4 illustrates appropriate UML.

Fig. 4. Proxy pattern in UML diagram

The same fragment using such approach will look like the following:

DAO method using proxy for transaction management

class CompanyDao implements ICompanyDao {

 @Override

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 88

 public Company lockCompany(Company company, User locker, String reason) {

 // Do some DB operations (inserts, updates,

 }

}

Event Driven Internal API

To make possible development of both extension modules without modifying main code and

web services with instant event notification we need to provide an ability to hook a moment when

some event occurs, e.g. poll has been created; respondent committed his vote, etc. Since it is well-

known task there is design pattern, called “Observer” which helps to implement transmitting event

information to the client once event has been fired.

Fig. 5. Observer pattern in UML

The intent is to define a one-to-many dependency between objects so that when one object

changes state, all its dependents are notified and updated automatically [6]. Thus, each module can
subscribe on events which it is interested in by implementing special observer interface and
registering it in observer repository. The core module should call notifyObservers() method of the
repository object once it is time to notify clients that some event has been occurred. Observer
repository will call notify() method for each of registered observers.

Implementation
All the problems we were looking solutions for, have their reflection in concrete scope of

functionality that needs to be done in “KSU Feedback”. Thus, let us bring more specificity and
provide the list of program parts which are the most critical from the perspective of the tasks we
have declared in introduction:

– General application ecosystem – part that organizes communication between all layers
of application, defines project structure, provides with a context at all points of program
life cycle.

– User interface components and interacting with user layer – part that is responsible for
displaying the information to user, reaction on his actions, invocation of appropriate
logic.

– Component “Poll” – part that can display set of questions of different types to user.
– Voting access control - part that provides an ability to specify which groups of people

can access a particular voting by different conditions.
It was already decided to use Java language and Java Development Kit (JDK) platform in

development, so it came possible for us to extend technological stack with ready solutions which
implement necessary part of architecture.

Below we take a closer look at each of parts introduced above.

General application ecosystem
Summarizing requirements we defined before, and finding known techniques for building

flexible independent components we selected Spring framework as the one which implements a lot

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 89

of architecture design parts we need: IoC container, annotation driven configuration, managing
objects life cycles. As result we have very flexible context with easy configuration.

To split huge application on the big reusable parts, responsible for a certain type of task we
divided it on projects, which will be compiled on the separate binary modules:

– common – library which contains common utility methods, object definitions which will
be widely used by almost all other parts

– domain – models in terms of MVC methodology annotated with persistence
annotations. This is also a library which doesn’t contain any business logic.

– api – library contains interfaces and public facades for application interfaces. This will
allow as in future easily prepare SDK for 3-rd party developers or change business logic
covered by default implementations of these interfaces.

– service – this library contains actual implementation of the business logic. Most of the
classes implements interfaces defined in api project.

– web-common – library which contains common reusable UI components.
– web-corporate – actual web application for corporate edition.
– web-personal – web application for Personal Feedback (simplified and personal-

oriented service).
– worker – daemon in linux terms, which performs scheduled background tasks like bulk

e-mailing, cleaning db, etc.
Figure 6 illustrates all these projects in UML

Fig. 6. Project structure

Such approach along with idem Spring allows us to add or even replace implementations of

the defined interfaces without recompiling previously created modules. The following example

from our project illustrates using of dependency injection for building flexible application.

Fig. 7. Typical dependencies between classes from the Service project in UML

On the Figure 7 we have interface PollService which represents a collection of business
logic methods related to polls, its implementation, called PollServiceImpl, interface PollExporter
which represents the object responsible for exporting given poll in different formats and finally
concrete realizations of the PollExporter for exporting in XML and PDF.As you see from UML

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 90

abowe both of exporter implementations use PollService interface below the hood, but doesn’t
know anything about implementation of the PollService. This allows us to replace implementation
each of these classes from the one hand and add another implementation from the other.

The most interesting part there is creating and linking concrete classes. IoC container is
responsive for doing this job automatically before application start.

Let’s look at the code snippets below.
PollServiceImpl class
@Component
public class PollServiceImpl extends EntityServiceImpl<Poll> implements PollService {
..........................
}

PollXmlExporter class
@Component
public class PollXmlExporterImpl extends AbstractXmlExporter implements PollExporter {

 @Autowired
 private PollService pollService;

}

PollPdfExporter class
@Component
public class PollPdfExporterImpl extends AbstractXmlExporter implements PollExporter {

 @Autowired
 private PollService pollService;

}

We use annotation driven configuration which is more flexible and allows avoiding XML
declarations for each managed bean. Each class which is annotated with @Component annotation
will be picked up by IoC container. Such objects in terms of Spring are called managed objects or
managed beans [7]. During context initialization, typically immediately after application start
Spring will instantiate each managed object and perform dependency injection basing on existing
meta information, defined in XML file or using annotations.

To configure dependency injection we use @Authowired annotation which indicates that
class field should be initialized with object instance from context. Since annotation doesn’t provide
any information about required object injection will be done by type. This means that after
initialization of the PollXmlExporterImpl for each field annotated with @Autowired IoC will try to
find suitable object instance in context. In this example it will try to find a class which implements
PollService interface since annotated field is of type PollService.

The other good example is also widely used in project. It allows creating repositories of the
objects basing on the classes available in classpath. Let’s look at the other UML.

In this case we have another service which is for exporting votes to various formats. Again,
each exporter implements VoteExporter interface and is annotated with @Component annotation.
The main difference is in the VoteServiceImpl:

VoteServiceImpl class
@Component
public class VoteServiceImpl extends EntityServiceImpl<Vote> implements VoteService {

 @Autowired
 private List<VoteExporter> voteExporters;

}

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 91

Fig. 8. Repository of the Vote Exporters in UML

Instead of auto wiring single object we annotated field which stores collection of
VoteExplorers. Spring will detect this and put all available objects from the container which
implements this interface. This feature allows us to extend functionality without modifying existing
components. Thus it is easy enough to create a separate library, compiled independently from the
main application which extend it with for instance new type of report or question fragment. Let’s
assume that we would like to add exporter which allows exporting files in RTF format, but our
application is in production already and we don’t want to rebuild it. Thus, here are the steps we
need to go through:
1. Create new project which depends on Api, Domain and Common projects. All these projects

contain only interfaces and model definitions without business logic.
2. Implement appropriate exporter interface and annotate it with @Component annotation. It’s

important to say that we are able to use any of the services here by simple adding private field of
the appropriate type and annotating it with @Autowire annotation. Even though we haven’t any
of the implementations in our project they will be available in application context.

3. Compile project in the .jar file and put it under the main application context path.
After that our new exporter will be handled by IoC container and injected in VotingService

along with other ones.

User interface components and interacting with user layer
Defined scope of functionality requires a lot of user interface views and forms. The problem

is that components are not trivial and need to be reused in different places. Along with that we have
very complex logic that depends on the data that user has entered. Obviously it would be nice to
have the business and user interface logic separated. Thus we decided to try to use the concept of
MVP described before. But unfortunately Java does not provide ready MVP solution “out-of-box”.
However there are a lot of free frameworks which do it. We stopped our choice on Apache Wicket
framework, which in addition brings such benefits as completely pure HTML templates at View
level, reusable components of Presentation layer and well abstracted at Model level.

Besides, inside of the components we can use helper objects from the IoC container, which
allows us to move all complex logic to special handler. Moreover we involved Callback pattern that
gives to class’ users ability to inject custom handling logic for particular events (e.g. form was
submitted, dialog was closed, etc.) Thus particular component contains generic logic of user
interface objects creation, validation and internal interaction. Fig. 9 shows simplified class diagram
for poll editor:

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 92

Fig. 9. Simplified UML class diagram shows relations between PollEditor components

As you can see PollEditor object works with Model (Model layer) that encapsulates Poll

domain object. All handling logic of it is done through PollService obtained from

SpringIoCContainer. Clients of PollEditor (Presenter layer) can add their additional handling by

setting PollFragmentCallback facade which methods will be called on particular events of

PollEditor life cycle. View level is represented by pure HTML markup file that is linked to

PollEditor.

The great benefit here is that we can reuse each written component and have business logic

separately. All communications between service logic and Presentation layer are done via Model

abstraction that encapsulates business domain object. Thus components can be reused everywhere

in context that operates with the same business objects.

Voting access control

Because of “KSU Feedback” specificity, it is very important to control the access to the

voting. Moreover, it is one of the main project features which give user several types of access

limitation for voting process. In internal project terms the group of people which can reach the

voting process through defined by user access criterias is target audience.

Each target audience provides its own specific way of authorization. User can specify the

details in editor component and indicate what audiences he wants to include for particular survey.

Then, it must be able to authorize the respondent by data he has provided. So each target audience

has to deal with a lot of responsibilities which we splitted into several classes. Fig. 10 shows class

set that needs to be created per one concrete target audience (SinglePasswordAudience).

The problem is that we do not have full list of target audience and most likely this part will

be extended with new types of access in a future. Along with this we need to write a core

component that will work with target audience in generic way without relying on any specific type.

This task looks quite hard as handling process is type sensitive. That means, for example, that only

one type of editor can edit one specific type of target audience; the same situation is with the rest of

the components.

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 93

Fig. 10. Set of classes for concrete target audience

Obviously, it would be much easier if we would have some object that contains all necessary

information about relationship between target audience and its helper components. For this reason
we created custom annotation @TargetAudienceMeta for encapsulation of meta information about
each component that handles particular target audience. It must present above declaration of each
class that participates in working cycle of target audience. For example:

@TargetAudienceMeta(type = SinglePasswordAudience.class)
public class SinglePasswordCredentialsCollector{...}

As you can see TargetAudienceMeta annotation indicates that
SinglePasswordCredentialsCollector collects credentials information for target audience of type
SinglePasswordAudience. The similar thing is done with editor and viewers components. The final
step was to write special class scanner that goes through specified package and looks for annotated
classes. As the scanner class implements event model and thus each time it founds appropriately
annotated class it calls register method of TargetAudienceResolver class which implements the
Repository design pattern. By the end of initialization we have fully instantiated repository that
provides us with useful methods for resolving the types of helper objects for target audience (see
Fig. 11).

Fig. 11. Target audience repository in UML

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 94

Such approach gives us an ability to create a common logic that works with target audiences

despite their type. It will get required information from TargetAudienceResolver instance.

Moreover it helps split the work into independent units which are connected with each other only at

meta-information level.

Conclusion

The problem of incompletely defined requirements for the critical parts of application

demands big flexibility from architecture in order to be able to write the components in a future

without any code refactoring. We made investigation of best practices which can be applied to help

achieve it. Based on the obtained results we tried to use them in architecture of most important parts

of “KSU Feedback”.

The result we got fully corresponds to SOLID principles we have used for estimation of

quality of a solution, and that is necessary, however not sufficient condition that we designed an

optimal architecture.

But we already had a chance to approbate it as we have come through several iterations of

“KSU Feedback” using this architecture. As a result it helped us to achieve the points listed below:

4. It is easy to extend with new functionality (we were able to create formal instruction of how to

extend particular parts).

5. We write only project-specific code for personal and corporate versions of feedback.

6. We always have runnable version of application.

Of course we are sure we did not find the ideal way that can be applied for each product in

all situations but at least it looks like it covers the goals we had at the beginning of our research.

And even for our case it also how its downside. The problem is that architecture is very complex

and requires big experience in programming and deep knowledge of several Java frameworks from

developers. This was omitted during architecture design phase but can become a serious problem

during the implementation, since each new team member should already have good experience in

Java enterprise development. However this problem obviously is out of scope of this article and

needs to be considered separately.

REFERENCES

1. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices (2002)

2. Martin, R. C.: "The Open-Closed Principle", C++ Report (1996)

3. Freeman, E; Freeman, El.; Sierra, K., Bates, B.: Head First Design Patterns (2004)

4. Fowler M.: Inversion of Control Containers and the Dependency Injection pattern (2004),

http://martinfowler.com/articles/injection.html

5. MSDN Blogs, Using the Model-View-Presenter (MVP) Design Pattern to enable Presentational

Interoperability and Increased Testability,

http://blogs.msdn.com/b/jowardel/archive/2008/09/09/using-the-model-view-presenter-mvp-design-

pattern-to-enable-presentational-interoperability-and-increased-testability.aspx

6. Johnson, R., Vlissides, J., Helm, R., Gamma E.: Design Patterns: Elements of Reusable Object-

Oriented Software (1994)

7. Walls C.: Spring in Action (2011)

Стаття надійшла до редакції 17.03.2013.

Співаковський О.В., Тітенок С.О., Березовський Д.О., Сторожук Я.І.,

Литвиненко О.А., Клименко Н.О.

Херсонський державний університет

ПРОБЛЕМА РОЗРОБКИ АРХІТЕКТУРИ СКЛАДНОГО ВЕБ-ДОДАТКУ “KSU

FEEDBACK ” В КОНТЕКСТІ ЧАСТКОВО ВІДОМИХ ВИМОГ

Проблема розробки гнучкої архітектури для критичних частин додатку “KSU

Feedback”, вимоги та об’єм робіт для яких визначені не вповній мірі. Досліджені

рекомендовані практики для рішення такого типу задач, і показано як вони застосовані в

ISSN 1998-6939. Інформаційні технології в освіті. 2013. № 15

 95

архітектурі “KSU Feedback”.

Ключовi слова: feedback 360, розробка, цiльова група, розробка програмного

забезпечення, архітектура, анкета

Спиваковский А.В., Титенок С.А., Березовский Д.А., Сторожук Я.И., Литвиненко

А.А., Клименко Н.О.

ПРОБЛЕМА РАЗРАБОТКИ АРХИТЕКТУРЫ СЛОЖНОГО ВЕБ-

ПРИЛОЖЕНИЯ “KSU FEEDBCK ” В КОНТЕКСТЕ ЧАСТИЧНО ИЗВЕСТНЫХ

ТРЕБОВАНИЙ

Проблема разработки гибкой архитектуры для кртических частей приложения “KSU

Feedback”, требования и объем работы для которых не определены в полной мере.

Исследованы рекомендуемые практики решения такого типа задач, и показано как они

применены в архитектуре “KSU Feedback”.

Ключевые слова: feedback 360, разработка, целевая группа, разработка программного

обеспечения, архитектура, анкета

