SOFTWARE OF SEPARATION OF ROOTS ON A SEGMENT

Authors

  • A. Veitsblit Kherson State University, Kherson
  • N. Shepel Kherson State University, Kherson
  • I. Vygodner Kherson National Technical University, Kherson

DOI:

https://doi.org/10.14308/ite000657

Keywords:

numerical methods, contraction operator, exponential convergence, segments of isolation, desktop, the diagram of classes, the window interface, graphic object

Abstract

All known widespread algorithms of a numerical solution of an equation on a straight line segment assume that segments of isolation of roots are already known. These are such segments, on each of which a solution is one and only one. The method of this work allows to discover all solutions of an equation  f(x) = 0 for arbitrary continuously differentiable function  f(x) on the set segment of a straight line with the set accuracy. Convergence of the method is exponential. Thus, the method automatically separates roots. In the course of numerical methods it hits in its ideological center, forcing to consider all structure of the theory to make it clear and deepen its understanding. The method of this work is realized in a desktop in language Java.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

<uk>
1. Березин, И. С. & Жидков, Н. П. (1966). Методы вычислений (т.1). Москва: “Наука”.
2. Tproger. (2018). Все для изучения Java. Примеры разработки. Retrieved from https://tproger.ru/tag/java.
3. Вейцбліт, О. Й. (2011). Методи обчислень. Методичні рекомендації до виконання лабораторних робіт. Херсон: Айлант.
4. Рид, М. & Саймон, Б. (1977). Методы современной математической физики (т.1). Москва: Мир.
5. Вейцбліт, О. Й. (2011). Методи обчислень. Навчальний посібник. Херсон: Айлант.
6. Бахвалов, Н. С. (1973). Численные методы (т.1). Москва: “Наука”.
7. Арнольд, В. И. (1978). Дополнительные главы теории обыкновенных дифференциальных уравнений. Москва: “Наука.
8. Kalman, D. (2002). Doubly Recursive Multivariate Automatic Differentiation. Magazine Mathematics, 75 (3), 187-202.
9. JFreeChart. (2013). Downloading JFreeChart. Retrieved from http://www.jfree.org/jfreechart/download.html.
</uk>
<en>
1. Berezyn, I. S. & Zhydkov, N. P. (1966). Methods of calculation (t.1). Moscow: “Nauka”.
2. Tproger (2018). Everything for learning Java. Examples of development. Retrieved from https://tproger.ru/tag/java.
3. Veitsblit, O. Y. (2011). Methods of calculation. Methodical recommendations for laboratory work. Kherson: Ailant.
4. Ryd, M. & Saimon, B. (1977). Methods of modern mathematical physics (t.1). Moscow: Myr.
5. Veitsblit, O. Y. (2011). Methods of calculation. Tutorial. Kherson: Ailant.
6. Bakhvalov, N. S. (1973). Numerical methods (t.1). Moscow: “Nauka”.
7. Arnold, V. Y. (1978). Additional chapters of the theory of ordinary differential equations. Moscow: “Nauka”.
8. Kalman, D. (2002). Doubly Recursive Multivariate Automatic Differentiation. Magazine Mathematics, 75 (3), 187-202.
9. JFreeChart. (2013). Downloading JFreeChart. Retrieved from http://www.jfree.org/jfreechart/download.html.
</en>

Published

27.03.2018

How to Cite

Veitsblit О. Й., Shepel М. C., & Vygodner І. В. (2018). SOFTWARE OF SEPARATION OF ROOTS ON A SEGMENT. Journal of Information Technologies in Education (ITE), (34), 007–020. https://doi.org/10.14308/ite000657