COMPUTER EXPERIMENTS WITH FINITE ELEMENTS OF HIGHER ORDER

Authors

  • A. Khomchenko Petro Mohyla Black Sea National University, Mykolaiv
  • N. Koval Petro Mohyla Black Sea National University, Mykolaiv https://orcid.org/0000-0001-5156-0591
  • N. Osipova Kherson State University, Kherson

DOI:

https://doi.org/10.14308/ite000648

Keywords:

information technology, computer mathematical packages, Maple, computer graphics, finite elements

Abstract

The paper deals with the problem of constructing the basic functions of a quadrilateral finite element of the fifth order by the means of the computer algebra system Maple. The Lagrangian approximation of such a finite element contains 36 nodes: 20 nodes perimeter and 16 internal nodes. Alternative models with reduced number of internal nodes are considered. Graphs of basic functions and cognitive portraits of lines of zero level are presented. The work is aimed at studying the possibilities of using modern information technologies in the teaching of individual mathematical disciplines.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

<uk>
1. Зенкевич, О. (1975). Метод конечных элементов в технике. Москва: Мир.
2. Зенкевич, О. & Чанг, И. (1974). Метод конечных элементов в теории сооружений и механике сплошной среды. Москва: Недра.
3. Толок, В.А., Киричевский, В.В., Гоменюк, С.И., Гребенюк, С.Н. & Бувайло, Д.П. (2003). Метод конечных элементов: теория, алгоритмы, реализация. Київ : Наукова думка.
4. Норри, Д. & де Фриз, Ж. (1981). Введение в метод конечных элементов. Москва : Мир.
5. Сегерлинд, Л. (1979). Применение метода конечных элементов. Москва : Мир.
6. Камаева, Л. И. & Хомченко, А. Н. (1988). Вычислительные эксперименты с альтернативными базисами серендиповых аппроксимаций. Прикл. пробл. прочности и пластичности. Анализ и оптимизация деформируемых систем. Всесоюз. межвуз. сб., 39, 103-105.
7. Камаева, Л. И. & Хомченко, А. Н. (1985). Новые модели конечных элементов серендипова семейства. Ивано-Франковск.
8. Хомченко, А. Н. & Камаева, Л. И. (1987). Геометрические аспекты серендиповых аппроксимаций. Ивано-Франковск.
9. Хомченко, А. Н., Литвиненко, Е. И. & Гучек, П. И. (1996). Геометрия серендиповых аппроксимаций. Прикл. геом. и инж. графика, 59, 40-42.
10. Камаева, Л. И. & Хомченко, А. Н. (1985). О моделировании конечных элементов серендипова семейства. Прикл. пробл. прочности и пластичности. Алгоритмизация и автоматизация решения задач упругости и пластичности. Всесоюз. межвуз. сб., 31, 14-17.
11. Хомченко, А.Н., Коваль, Н.В. & Осипова, Н.В. (2016). Когнитивная компьютерная графика как средство «мягкого» моделирования в задачах восстановления функций двух переменных. Информационные технологии в образовании, 28, 7-18. DOI: 10.14308/ite000599.
12. Зенкевич, О. & Морган, К. (1986). Конечные элементы и аппроксимация. Москва : Мир.
13. Стренг, Г. & Фикс, Дж. (1977). Теория метода конечных элементов. Москва : Мир.
</uk>
<en>
1. Zienkiewicz, O. (1975). The finite element method in engineering science. Moscow: Mir.
2. Zienkiewicz, O. & Chang, I. (1974). The finite element method in the theory of structures and the mechanics of a continuous medium. Moscow: Nedra.
3. Tolok, V.A., Kyrychevskyi, V.V., Gomeniuk, S.I., Hrebeniuk, S.N. & Buvailo, D.P. (2003). Finite element method: theory, algorithms, implementation. Kyiv: Naukova dumka.
4. Norrie, D. & Vriez, Zh. (1981). An Introduction to Finite Element Analysis. Moscow: Mir.
5. Segerlind, L. (1979). Applied Finite Element Analysis. Moscow: Mir.
6. Kamaeva, L. Y. & Khomchenko, A. N. (1988). Computational experiments with alternative bases serendipity approximations, Prykl. probl. prochnosty y plastychnosty. Analyz y optymyzatsyia deformyruemykh system. Vsesoiuz. mezhvuz. sb., 39, 103-105.
7. Kamaeva, L. Y. & Khomchenko, A. N. (1985). New finite element models of the Serendip family. Yvano-Frankovsk.
8. Khomchenko, A. N. & Kamaeva, L. Y. (1987). Geometric aspects of serendipity approximations. Yvano-Frankovsk.
9. Khomchenko, A. N. & Litvinenko, E. Y., Guchek, P. Y. (1996). Geometry of the Serendip Approximations. Prykl. heom. y ynzh. hrafyka, 59, 40-42.
10. Kamaeva, L. Y. & Khomchenko, A. N. (1985). On the modeling of finite elements of the Serendip family. Prykl. probl. prochnosty y plastychnosty. Alhorytmyzatsyia y avtomatyzatsyia reshenyia zadach upruhosty y plastychnosty. Vsesoiuz. mezhvuz. sb., 31, 14-17.
11. Khomchenko, A.N., Koval, N.V. & Osipova, N.V. (2016). Cognitive computer graphics as a means of "soft" modeling in problems of restoration of functions of two variables. Information Technologies in Education, 28, 7-18. DOI: 10.14308/ite000599.
12. Zienkiewicz, O. & Morgan, K. (1986). Finite Elements and Approximation. Moscow: Mir.
13. Strang, H. & Fix, Dzh. (1977). An Analysis of the Finite Element Method. Moscow: Mir.
</en>

Published

27.12.2017

How to Cite

Khomchenko А. Н., Koval Н. В., & Osipova Н. В. (2017). COMPUTER EXPERIMENTS WITH FINITE ELEMENTS OF HIGHER ORDER. Journal of Information Technologies in Education (ITE), (33), 025–038. https://doi.org/10.14308/ite000648