NONSTANDARD PROBLEMS IN STUDYING THE PROPERTIES FUNCTIONS
DOI:
https://doi.org/10.14308/ite000147Keywords:
continuity, convergence, function, limit, monotonicityAbstract
In this paper we consider two non-standard problems that may be offered to students for independent solution in the study of fundamental properties of functions in the course of mathematical analysis. These tasks are wearing creativity and contribute to a better understanding of students to concepts such as monotonicity and continuity of the function
Downloads
Download data is not yet available.
Metrics
Metrics Loading ...
References
<uk>
1. Гелбаум Б., Олмстед Дж. Контрпримеры в анализе. – М.: Мир, 1967. – 251 с.
2. Давидов М.О. Курс математичного аналізу, ч. 1. – К.: Вища школа, 1976. – 368 с.
3. Шкіль М.І. Математичний аналіз, ч. 1. – К.: Вища школа, 1978. – 383 с.
</uk>
<en>
1. Gelbaum B., Olmsted Dzh. Kontrprimery v analize. – M.: Mir, 1967. – 251 s.
2. Davidov M.O. Kurs matematichnogo analizu, ch. 1. – K.: Vishha shkola, 1976. – 368 s.
3. Shkil' M.I. Matematichnij analiz, ch. 1. – K.: Vishha shkola, 1978. – 383 s.
</en>
1. Гелбаум Б., Олмстед Дж. Контрпримеры в анализе. – М.: Мир, 1967. – 251 с.
2. Давидов М.О. Курс математичного аналізу, ч. 1. – К.: Вища школа, 1976. – 368 с.
3. Шкіль М.І. Математичний аналіз, ч. 1. – К.: Вища школа, 1978. – 383 с.
</uk>
<en>
1. Gelbaum B., Olmsted Dzh. Kontrprimery v analize. – M.: Mir, 1967. – 251 s.
2. Davidov M.O. Kurs matematichnogo analizu, ch. 1. – K.: Vishha shkola, 1976. – 368 s.
3. Shkil' M.I. Matematichnij analiz, ch. 1. – K.: Vishha shkola, 1978. – 383 s.
</en>
Downloads
Published
31.05.2010
How to Cite
Kuzmich, B. (2010). NONSTANDARD PROBLEMS IN STUDYING THE PROPERTIES FUNCTIONS. Journal of Information Technologies in Education (ITE), (6), 072–075. https://doi.org/10.14308/ite000147
Issue
Section
Articles
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.