HYBRID METHOD FOR INTEGRAL EVALUATION OF REGIONAL SYSTEMS EFFICIENCY (ON EXAMPLE OF THE SOUTHERN CITIES OF RUSSIA)

Authors

  • V.V. Selyutin Institute of Social, Economic and Humanitarian Research, Southern Scientific Center of the Russian Academy of Sciences, Southern Federal University (Rostov-on-Don)
  • S.A. Zarutsky Institute of Social, Economic and Humanitarian Research, Southern Scientific Center of the Russian Academy of Sciences, Southern Federal University (Rostov-on-Don)
  • K.E. Mesrobian Institute of Social, Economic and Humanitarian Research, Southern Scientific Center of the Russian Academy of Sciences, Southern Federal University (Rostov-on-Don)

DOI:

https://doi.org/10.14308/ite000361

Keywords:

AHP, DEA, efficiency, integral evaluation, MCDM, ranking, regional systems, TOPSIS

Abstract

     The paper proposes a hybrid technology for multidimensional ranking of complex socio-economic systems with many inputs and outputs. Two approaches are compared such as DEA model for objective separation of objects in efficient and inefficient and MCDM for subjective rankings. The combination of these two approaches enhances the quality of integral evaluation of complex systems. The case study of ranking of the cities of Southern Russia is presented.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

<uk>
1. Cook W.D., Seiford L.M. Data envelopment analysis (DEA) – Thirty years on // European Journal of Operational Research. 2009. № 192. P.1–17.
2. Dyson R.G., Allen R., Camanho A.S., Podinovski V.V., Sarrico C.S., Shale E.A. Pitfalls and protocols in DEA // European Journal of Operational Research. 2001. № 132. P. 245–259.
3. Hauner D. Explaining Differences in Public Sector Efficiency: Evidence from Russia’s Regions // World Development. 2008. Vol. 36. № 10. P. 1745–1765.
4. Hauner D., Kyobe A. Determinants of Government Efficiency // IMF Working Papers. 08/228, International Monetary Fund. 2008. 27 p.
5. Stewart T.J. Relationships between Data Envelopment Analysis and Multicriteria Decision Analysis // The Journal of the Operational Research Society. 1996. Vol. 47, No. 5. P. 654–665.
6. Tsuneyoshi T., Hashimoto A., Haneda S. Quantitative evaluation of nation stability // Journal of Policy Modeling. 2012. № 34. P.132–154.
7. Месропян К.Э. Алгоритмизация процедуры измерения эффективности региональных систем на основе метода анализа огибающих (на примере сельского хозяйства Юга России) // Вестник Южного научного центра РАН. 2011. Т. 7. № 4. С. 83–88.
8. Регионы России. Основные социально-экономические показатели городов. 2009: Стат. сб. / Росстат. М., 2009. 378 с.
9. Peng L., Zhanxin M.The Evaluation of City Competitiveness in Shandong Province // Energy Procedia. 2011. №5. Р. 472–476.
10. WangY., Lan Y. Measuring Malmquist productivity index: A new approach based on double frontiers Data envelopment analysis //Mathematical and Computer Modelling. 2011. № 54. P. 2760–2771.
11. Tervonen T., Lahdelma R. Implementing stochastic multicriteria acceptability analysis // European Journal of Operational Research. № 178. 2007. P. 500–513.
12. Chen S.J., Hwang C.L. Fuzzy Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, Berlin. 1992.
13. Saaty T.L. Principia Mathematica Decernendi: Mathematical Principles of Decision Making. RWS Publications. Pittsburgh, Pennsylvania. 2010.
</uk>
<en>
1. Cook W.D., Seiford L.M. Data envelopment analysis (DEA) – Thirty years on // European Journal of Operational Research. 2009. № 192. P.1-17.
2. Dyson R.G., Allen R., Camanho A.S., Podinovski V.V., Sarrico C.S., Shale E.A. Pitfalls and protocols in DEA // European Journal of Operational Research. 2001. № 132. P. 245-259.
3. Hauner D. Explaining Differences in Public Sector Efficiency: Evidence from Russia’s Regions // World Development. 2008. Vol. 36. № 10. P. 1745-1765.
4. Hauner D., Kyobe A. Determinants of Government Efficiency // IMF Working Papers. 08/228, International Monetary Fund. 2008. 27 p.
5. Stewart T.J. Relationships between Data Envelopment Analysis and Multicriteria Decision Analysis // The Journal of the Operational Research Society. 1996. Vol. 47, No. 5. P. 654-665.
6. Tsuneyoshi T., Hashimoto A., Haneda S. Quantitative evaluation of nation stability // Journal of Policy Modeling. 2012. № 34. P.132-154.
7. Mesropjan K.E. Algoritmizacija procedury izmerenija effektivnosti regional'nyx sistem na osnove metoda analiza ogibajushhix (na primere sel'skogo xozjajstva Juga Rossii) // Vestnik Juzhnogo nauchnogo centra RAN. 2011. T. 7. № 4. S. 83-88.
8. Regiony Rossii. Osnovnye social'no-ekonomicheskie pokazateli gorodov. 2009: Stat. sb. / Rosstat. M., 2009. 378 s.
9. Peng L., Zhanxin M.The Evaluation of City Competitiveness in Shandong Province // Energy Procedia. 2011. №5. R. 472-476.
10. WangY., Lan Y. Measuring Malmquist productivity index: A new approach based on double frontiers Data envelopment analysis //Mathematical and Computer Modelling. 2011. № 54. P. 2760–2771.
11. Tervonen T., Lahdelma R. Implementing stochastic multicriteria acceptability analysis // European Journal of Operational Research. № 178. 2007. P. 500–513.
12. Chen S.J., Hwang C.L. Fuzzy Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, Berlin. 1992.
13. Saaty T.L. Principia Mathematica Decernendi: Mathematical Principles of Decision Making. RWS Publications. Pittsburgh, Pennsylvania. 2010.
</en>

Published

28.06.2012

How to Cite

Selyutin В., Zarutsky С., & Mesrobian К. (2012). HYBRID METHOD FOR INTEGRAL EVALUATION OF REGIONAL SYSTEMS EFFICIENCY (ON EXAMPLE OF THE SOUTHERN CITIES OF RUSSIA). Journal of Information Technologies in Education (ITE), (13), 163–170. https://doi.org/10.14308/ite000361